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Abstract—To maintain and understand large applications, it is important to know their architecture. The first problem is that unlike

classes and packages, architecture is not explicitly represented in the code. The second problem is that successful applications evolve

over time, so their architecture inevitably drifts. Reconstructing the architecture and checking whether it is still valid is therefore an

important aid. While there is a plethora of approaches and techniques supporting architecture reconstruction, there is no

comprehensive software architecture reconstruction state of the art and it is often difficult to compare the approaches. This paper

presents a state of the art in software architecture reconstruction approaches.

Index Terms—Software architecture reconstruction.

Ç

1 INTRODUCTION

SOFTWARE architecture acts as a shared mental model of a
system expressed at a high-level of abstraction [66]. By

leaving details aside, this model plays a key role as a bridge
between requirements and implementation [48]. It allows
you to reason architecturally about a software application
during the various steps of the software life cycle.
According to Garlan [48], software architecture plays an
important role in at least six aspects of software develop-
ment: understanding, reuse, construction, evolution, analy-
sis, and management.

Software architecture is thus important for software
development, but architectures do not have an explicit
representation in most general purpose programming
languages. Another problem is that successful software
applications are doomed to continually evolve and grow
[93]; and as a software application evolves and grows, so
does its architecture. The conceptual architecture often
becomes inaccurate with respect to the implemented
architecture; this results in architectural erosion [105], drift
[124], mismatch [49], or chasm [134].

Several approaches and techniques have been proposed
in the literature to support software architecture reconstruc-
tion (SAR). Mendonça and Kramer [106] presented a first
raw and simple classification of SAR environments based on
a few typical scenarios (filtering and clustering, compliance
checking, analyzers generators, program understanding,
and architecture recognition). O’Brien et al. surveyed SAR

practice needs and approaches [119]. Still, there is no
comprehensive state of the art of SAR approaches and it is
often difficult to compare the approaches.

This paper presents a state of the art of software
architecture reconstruction approaches. While it is a review
on the research in SAR, we organized it from the
perspective of a reverse engineer who wants to reconstruct
the architecture of an existing application and would like to
know which approaches to consider. We structure the field
around the following axes: the goals, the process, the inputs,
the techniques, and the outputs of SAR approaches. In each
axis, we classify both the most influential approaches and
the original ones, with the goal to create a structured
reference or map of the research field.

1.1 Approach Selection

We extracted the information described in this taxonomy
based only on published papers or documents that are
publicly available and trackable, such as PhDs and technical
reports. We excluded industrial tools for accessibility
reasons and focused on the ideas presented.

We acknowledge that some of the information may not
be totally correct since sometimes, we had to interpret the
description of the tool or approach. To that regard, it should
be noted that software architecture extraction approaches
are often far from being really well specified. In addition, as
software architecture is a blurry concept by definition, it is
hard to make clear distinctions. Therefore, the trade-off in
this taxonomy is extent versus extreme precision with
respect to the ideas and approaches. We organized the
paper as a cartography rather than a comparison, because
we believe that a taxonomy should structure the domain
and provide a set of criteria, and in the specific field of
software architecture, the reader has to complement the
information we put in perspective. Still we apply a rigorous
selection process, as explained now.

In this paper, we select works in two steps. First, in
addition to works that are extracting architectural informa-
tion, we also consider approaches that do not specifically
extract architecture but related artifacts such as design
patterns, features, or roles, since they often crosscut or are
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low-level constituents of the architecture. We read 366 works
(papers, PhD, and reports) on architecture extraction and
visualization and 76 on features, design patterns, and
aspects identification. Since there are often several papers
around the same tool or approach, we selected the most
significant ones, but it does not mean that the papers we do
not cite are not interesting. In total, we selected 181 papers,
including some papers providing descriptions and defini-
tions software architecture; the selection was driven by the
excellence of the work, its originality, or its impact in the
community—as perceived through the number of references
in the literature.

We also consider approaches that visualize programs,
since they are often the basis for abstracting and extracting
architectural views, but we limit ourselves to the program
visualization approaches that support the overall extraction
process and architecture reconstruction.

In the second step, we support the comparison of the
approaches with a table for each axis that structures this
survey. In these tables, we list only works that are the most
concerned about architectural extraction. For the sake of
space, we consider two categories of works: first, important
contributions, i.e., those which were pioneers or influenced
subsequent works in the literature, and second, the original
works taking a specific perspective or approach to the
general problem—by original, we mean that the work did not
gain a lot of following in the community, but is still
interesting from the survey perspective. This second cate-
gory is interesting because it broadens the SAR taxonomy.

A word about presentation. To avoid having one single
approach take all of the explanation space, we illustrate our
classification with as many different works as possible;
therefore, the fact that we list a tool as an example does not
necessarily mean that it is the most cited or used.

We do not take into account works like ArchJava [1] that
extend traditional languages to mix architectural and
programming elements or other architectural description
languages, since in such cases, the architecture is not
extracted from existing applications. We also exclude
approaches proposing general methodology or guidelines
that do not stress a specific point to support software
architecture reconstruction [31], [82], [155].

Section 2 first stresses some key vocabulary definitions
and the challenges of software architecture reconstruction.
Section 3 describes the criteria that we adopted in our
taxonomy. Sections 4-8 then cover each of these criteria.
Before concluding, Section 9 surveys the extraction of
artifacts related to software architecture such as design
patterns and features.

2 SAR CHALLENGES

Kruchten [87] presents a good overview of software
architecture as a field and its history. Now, before going
into depth on the challenges of SAR, we feel the need to
clarify the vocabulary.

2.1 Vocabulary

2.1.1 Software Architecture

IEEE defines software architecture as “the fundamental
organization of a system embodied in its components, their

relationships to each other and the environment, and the
principles guiding its design and evolution” [70]. This defini-
tion is closely related to Shaw and Garlan’s [141].

2.1.2 Architectural Style

A software architecture often conforms to an architectural
style, which is a class of architectures or a pattern of
structural organization. An architectural style is “a vocabu-
lary of components and connector types, and a set of constraints
on how they can be combined” [141].

2.1.3 Architectural Views and Viewpoints

We can view a software architecture from several viewpoints
since the different system stakeholders have different ex-
pectations or concerns about the system [70], [88].

View. A view is “a representation of a whole system from the
perspective of a related set of concerns” [70].

Viewpoint. A viewpoint is “a specification of the conven-
tions for constructing and using a view. A pattern or a template
from which to develop individual views by establishing the
purposes and audience for a view and the techniques for its
creation and analysis” [70].

2.1.4 Conceptual Architecture

This term refers to the architecture that exists in human
minds or in the software documentation [134], [162]. In the
literature, conceptual architecture is also qualified as
idealized [60], intended [134], [175], as-designed [74], [162], or
logical [104].

2.1.5 Concrete Architecture

This term refers to the architecture that is derived from
source code [134], [162]. It is also known as the as-
implemented [74], [134], as-built [60], [162], realized [175], or
physical [104] architecture.

2.1.6 Software Architecture Reconstruction (SAR)

Software architecture reconstruction is a reverse engineer-
ing approach that aims at reconstructing viable architectur-
al views of a software application. The literature uses
several other terms to refer to SAR: reverse architecting, or
architecture extraction, mining, recovery, or discovery. The last
two terms are more specific than the others [105]: recovery
refers to a bottom-up process, while discovery refers to a top-
down process (see Section 5).

2.2 Challenges

One of the most obvious goals of SAR is to identify
abstractions which represent architectural views or ele-
ments. In this context, two sources of information are
considered: human expertise and program artifacts (e.g.,
source code and execution traces).

On the one hand, human expertise is primordial to treat
architectural concepts. Knowledge of business goals, re-
quirements, product family reference architectures, or
design constraints is important to assist SAR. However,
when we take human and business knowledge into
consideration, several problems appear:

1. Because of the high rate of turnover among experts
and the lack of complete up-to-date documentation,
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the conceptual architecture in human minds is often
obsolete, inaccurate, incomplete, or at an inadequate
abstraction level. SAR should take into account the
quality of the information.

2. When reconstructing an architecture, system stake-
holders have various concerns such as performance,
reliability, portability, or reusability; SAR should
support multiple architectural viewpoints.

3. Reverse engineers sometimes get lost in the increas-
ing complexity of software. SAR needs to be
interactive, iterative, and parameterizable [53].

On the other hand, source code and application execu-
tion are the few trustworthy reliable sources of information
about the software application which contains its actual
architecture. However, reconstructing the architecture from
the source code raises several problems:

1. The approaches must scale to handle the large
amount of data held by the source code.

2. Since the considered systems are typically large,
complex, and long-living, SAR should handle devel-
opment methods, languages, and technologies that
are often heterogeneous and sometimes interleaved.

3. Architecture is not explicitly represented at the
source code level. In addition, language concepts
such as polymorphism, late-binding, delegation, or
inheritance make it harder to analyze the code [32],
[170]. The extraction of a relevant architecture is then
a difficult task.

4. The nature of software raises the questions of
whether dynamic information should be extracted
as the system is running, and then, how do
behavioral aspects appear in the architecture.

The major challenges of software architecture recon-
struction are thus abstracting, identifying, and presenting
higher level views from lower level and often hetero-
geneous information.

3 TAXONOMY AXES

Researchers already attempted to classify the field.
Mendonça and Kramer [106] proposed a rough classifica-
tion of SAR environments and distinguished five families
based on the purpose of the approaches; they actually only
define one criterium, with five values: filtering and
clustering, compliance checking, analyzer generators, pro-
gram understanding, and architecture recognition. O’Brien
et al. [119] presented some scenarios and approaches of
SAR practice. Like us, they propose a pragmatic way to
classify SAR approaches: they introduce recurring practice
scenarios to characterize an approach: view set, enforced
architecture, quality-attribute-changes, common and vari-
able artifacts, binary components, and mixed languages.
They then propose a technique axis to classify approaches
along values of manual, manual with tool support, and
query language. The two criteria roughly correspond to
our Goals and Techniques axes. Gallagher et al. propose a
framework to assess architectural visualization tools and
compare a couple of tools [45]. Guéhéneuc et al. present a
comparative framework for design recovery tools and
compared three approaches [56]. As a conclusion, we can
state that there is no deep and large survey of SAR.

We propose a deeper classification based on the lifetime
of SAR approaches, as depicted in Figs. 1 and 2: intended
goals, followed processes, required inputs, used techniques,
and expected outputs. Our taxonomy treats a larger number
of approaches than the previous attempts. In particular,
while focusing on SAR approaches, we analyze a broad
range of works. We also put in context works related to
program visualization, design patterns, and features ex-
traction, since these works are related to the notion of
architecture. We also mention some borderline works, but
without comparing them in depth for space reasons.

Goals. SAR is considered by the community as a
proactive approach to answer stakeholder business goals
[31], [150]. The reconstructed architecture is the basis for
redocumentation, reuse investigation, and migration to
product lines, or coevolution of implementation and
architecture. Some approaches do not extract the architec-
ture itself but related and orthogonal artifacts that provide
valuable additional information to engineers such as design
patterns, roles, or features.

Processes. We distinguish three kinds of SAR processes
based on their flow to identify an architecture: bottom-up,
top-down, or hybrid.

Inputs. Most SAR approaches are based on source
code information and human expertise. However, some
exploit other architectural or nonarchitectural information
sources such as dynamic information or historical
information. In addition, not all approaches use architec-
tural styles and viewpoints even though these are the
paramount of architecture.

Techniques. The research community has explored
various architecture reconstruction techniques that we
classify according to their level of automation.

Outputs. While all SAR approaches intend to provide
architectural views, some of them produce other valuable
outputs such as information about the conformance of
architecture and implementation.

4 SAR GOALS

To put in perspective the goals of SAR approaches, we
briefly present the general goals of software architecture.
According to Garlan, software architecture contributes to
six main goals of software development [48].

Understanding. Architectural views describe a software
system at a level of abstraction high enough to understand
its overall design, to reason about it and make decisions
taking into account its design constraints, quality attributes,
rationale, possible bottlenecks, etc.
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Reuse. Architectural views strongly highlight candidates

for reuse such as components, frameworks, and patterns.
Construction. Architectural views are at a high level of

abstraction, allowing developers to focus their attention on

the implementation of major components and relationships

and to refine it iteratively.
Evolution. Architectural views make explicit the current

constraints and better expose how the software application

is expected to evolve.
Analysis. Based on the high abstraction level of

architectural views, new useful analyzes can be performed,

such as style conformance, dependence analysis, or quality

attribute analysis.
Management. The clearer the view of the software

system is, the more successful the development task will be.

4.1 Rearchitecting Goals

Several authors have categorized architecture roles in

software development [48]; the roles involved in an

architecture define the motivations for rearchitecting. In

particular, Kazman and Bass have a pragmatic categoriza-

tion of business goals [73] that motivate having an

architecture in the first place. Similarly, in the context of

maintenance, architecture reconstruction should answer the

business objectives of stakeholders; it is a proactive process

realized for future forward engineering tasks.
Knodel et al. identified 10 distinct purposes or needs

[83]; however, the purposes they present simultaneously

are too narrow and do not cover all goals. This is why we do

not use them here. To classify SAR approaches in Table 1,

we grouped these purposes into six main goal categories

refining the goals mentioned by Garlan [48].
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TABLE 1
SAR Goals Overview

Fig. 2. A process-oriented taxonomy for SAR.



4.1.1 Redocumentation and Understanding

The primary goal of SAR is to reestablish software
abstractions. Recovered architectural views document soft-
ware applications and help reverse engineers understand
them [165]. For instance, the software bookshelf introduced
by Finningan et al. illustrates this goal [12], [42], [67], [144].
Svetinotic and Godfrey state that not only the recovered
architecture is important, but also its rationale, i.e., why it is
as it is [155]. They focus on the architecture rationale forces
to recover the decisions made, their alternatives, and why
each one was or was not chosen.

4.1.2 Reuse Investigation and Product Line Migration

Software product lines allow one to share commonalities
among products while getting customized products. Archi-
tectural views are useful to identify commonalities and
variabilities among products in a line [36], [129], [149]. SAR
has also been used in the context of service-oriented
architectures, to identify components from existing systems
that can be converted into services [120].

4.1.3 Conformance

To evolve a software application, it seems hazardous to use
the conceptual architecture because it is often inaccurate
with respect to the concrete one. In this case, SAR is a means
to check conformance between the conceptual and the
concrete architectures. Murphy et al. introduced the reflex-
ion model and RMTool to bridge the gap between high-level
architectural models and the system’s source code [114],
[115]. Using SAR, reverse engineers can check conformance
of the reconstructed architecture against rules or styles like
in the SARTool [41], [86], Nimeta [134], Symphony [165],
DiscoTect [180], Focus [24], [104], and DAMRAM [105].

4.1.4 Coevolution

Architecture and implementation are two levels of abstrac-
tion that evolve at different speeds. Ideally, these abstractions
should be synchronized to avoid architectural drift. Tran and
Holt propose a method to repair evolution anomalies
between the conceptual and the concrete architectures,
possibly altering either the conceptual architecture or the
source code [162]. To dynamically maintain this synchroni-
zation, Wuyts uses logic metaprogramming [179]; Mens et al.
use intensional source code views and relations through
Intensive [108], [109], [179]; Favre [38] uses metaware (i.e.,
meta- and meta-meta-models); and Huang et al. [69] use a
reflection mechanism based on dynamic information.

4.1.5 Analysis

An analysis framework may steer an SAR framework so
that it provides required architectural views to compute
architectural quality analyzes. Such analysis frameworks
assist stakeholders in their decision-making processes. In
ArchView [126], SAR and evolution analysis activities are
interleaved. QADSAR is a tool that offers several analyzes
linked to threads, waiting points, and performance
properties [150], [151]. Moreover, flexible SAR environ-
ments such as Dali [74], [78], Armin [79], [120], or Gupro
[33] support architectural analysis methods like SAAM
[76] or ATAM [77] by exporting the extracted architectures
to dedicated tools.

4.1.6 Evolution and Maintenance

SAR is often a first step toward software evolution and
maintenance. Here, we use the term evolution to mean the
study of the architecture as a tool to support application
evolution and not the study of the evolution itself. Under-
standing the inputs on which an approach is based is key to
make this distinction: Some approaches consider the history
of a system to understand its evolution but not in the precise
goal of directly supporting the system’s evolution. Focus
subscribes to that perspective; its strength is that the SAR
scope is reduced to the system part which should evolve [24],
[104]. Krikhaar and coworkers also introduced a two-phase
approach to evolve architecture based on SAR and change
impact analyzes [41], [86]. Huang et al. [69] also consider
SAR in the perspective of evolution and maintenance.

4.2 Related and Orthogonal Artifacts

Some SAR approaches do not directly extract the
architecture of an application but correlated artifacts that
crosscut and complement the architecture. Such artifacts
are design patterns, features, aspects, or roles and collabora-
tions. While these artifacts are not the architecture itself
(i.e., view points or architecture), they provide valuable
information about it [8].

Patterns play a key role in software engineering at
different levels of abstraction: architectural patterns, design
patterns, or idioms [8], [16]. Some reverse engineering
approaches are thus based on design pattern identification
[5], [6], [55], [63], [85], [178].

Features and aspects are also extracted from existing
applications [35], [52], [123], [134], [171]. In the context of
this paper, we do not take aspect mining into account since
a couple of surveys have already been published on the
subject [18], [80], [118].

Roles and collaborations are important to object-oriented
design: To achieve the program’s task, objects collaborate
with each other, each one playing a specific role [131].
However, roles and collaborations are not explicit but
buried into programs. Both Wu et al. [176] and Richner and
Ducasse [133] support the extraction of roles and collabora-
tions using dynamic information, following the work of
Lange and Nakamura [90].

5 SAR PROCESSES

SAR follows either a bottom-up, a top-down, or a hybrid
opportunistic process.

5.1 Bottom-Up Processes

Bottom-up processes start with low-level knowledge to
recover architecture. From source code models, they pro-
gressively raise the abstraction level until a high-level
understanding of the application is reached (see Fig. 3)
[14], [153].

Also called architecture recovery processes, bottom-up
processes are closely related to the well-known extract-
abstract-present cycle described in Tilley et al. [159]. Source
code analyzes populate a repository, which is queried to
yield abstract system representations, which are then
presented in a suitable interactive form to reverse engineers.
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Examples. The Dali tool by Kazman and Carrière [74],
and Kazman et al. [78] supports a typical example of a
bottom-up process: 1) Heterogeneous low-level knowledge
is extracted from the software implementation, treated and
stored in a relational database. 2) Using the Rigi visualiza-
tion tool [113], [173], a reverse engineer visualizes and
manually abstracts this information. 3) A reverse engineer
specifies patterns by selecting source model entities with
SQL queries and abstracting them with Perl expressions.
Based on Dali, Guo et al. proposed ARM [57] which
focuses on design patterns conformance.

In Intensive, Mens et al. use logic intension to group
related source code entities in views that are robust to code
changes [109], [179]. Reverse engineers incrementally define
views and relations by means of intensions specified as
Smalltalk or logic queries. Intensive classifies the views and
displays consistencies and inconsistencies with the code
and between architectural views. Intensive visualizes its
results with CodeCrawler [92].

Lungu et al. built both a method and a tool called
Softwarenaut [98] to interactively explore packages. They
enhance the exploration process in the package architectur-
al structure by guiding the reverse engineer toward the
relevant packages. They characterize packages based on
their relations and their internal structure. A set of packages
are highlighted and associated to exploration operations
that indicate the actions to get a better understanding of the
software architecture.

Other bottom-up approaches include ArchView [126],
Revealer [127], [128] and ARES [36], ARMIN [79], [120], and
Gupro [33]. We classify the works around PBS/SBS [12],
[42], [67], [144] in this category, but since they consider
conceptual architectures to steer the process, we could have
classified them with the hybrid processes as well [12], [42],
[67], [144].

5.2 Top-Down Processes

Top-down processes start with high-level knowledge such
as requirements or architectural styles and aim to
discover architecture by formulating conceptual hypoth-
eses and matching them to the source code [17], [114],
[153] (see Fig. 4). The term architecture discovery often
describes this process.

Examples. The Reflexion Model of Murphy et al. is a

typical example of a top-down process [114], [115]. First, the

reverse engineer defines his high-level hypothesized con-

ceptual view of the application. Second, he specifies how

this view maps to the source code concrete view. Finally,

RMTool confronts both conceptual and concrete views to

compute a reflexion model that highlights convergences,

divergences, and absences (see Fig. 5). The reverse engineer

iteratively computes and interprets reflexion models until

satisfied. In a reflexion model, a convergence locates an

element that is present in both views, a divergence an

element that is only in the concrete view, and an absence an

element that is only in the conceptual view. The SAVE tool

evaluates a given software architecture and its correspond-

ing source code and points out the differences between

these two artifacts in terms of convergences, divergences,

and absences [111]. The reflexion model offers a better

support to express the conceptual architecture and the

results of the process than the approach developed in SoFi

[17]. The Reflexion Model influenced other works [20], [61],

[83], [133], [162]. Not related to the Reflexion Model, Argo

critics an architecture with high-level goals and at a high-

level representation; however, it is not clear how the

architecture is effectively represented [136].
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Fig. 3. A bottom-up process: From the source code, (1) views are

extracted and (2) refined.

Fig. 4. A top-down process. (1) A hypothesized architecture is defined.
(2) The architecture is checked against the source code. (3) The
architecture is refined.

Fig. 5. The Reflexion Model, a top-down process. (1) A hypothesized

architecture is defined. (2) Rules map source entities to architectural

elements (3) RMTool compares the extracted and hypothesized

architectures and the process iterates.



5.3 Hybrid Processes

Hybrid processes combine bottom-up with top-down
processes [153], [165]. On one hand, low-level knowledge
is abstracted using various techniques. On the other hand,
high-level knowledge is refined and confronted against the
previously extracted views (see Fig. 6). Because hybrid
processes reconcile the conceptual and concrete architec-
tures, they are frequently used to stop architectural erosion
[105], [124]. Hybrid approaches often use hypothesis
recognizers that provide bottom-up reverse engineering
strategies to support top-down exploration of architectural
hypothesis [123].

Examples. Sartipi implements a pattern-based SAR
approach in Alborz [139]. The architecture reconstruction
has two phases. During the first bottom-up phase, Alborz
parses the source code, presents it as a graph, then divides
that graph in cohesive regions using data mining techni-
ques. The resulting model is at a higher abstraction level
than the code. During the second top-down phase, the
reverse engineer iteratively specifies his hypothesized
views of the architecture in terms of patterns. These
patterns are approximately mapped with graph regions
from the previous phase using graph matching and
clustering techniques. Finally, the reverse engineer decides
to proceed or not to a new iteration based on the partially
reconstructed architecture and evaluation information that
Alborz provides.

Christl et al. [20] present an evolution of the Reflexion
Model. They enhance it with automated clustering to
facilitate the mapping phase. As in the Reflexion Model,
the reverse engineer defines his hypothesized view of the
architecture in a top-down process. However, instead of
manually mapping hypothetic entities with concrete ones,
the new method introduces clustering analysis to partially
automate this step. The clustering algorithm groups
concrete entities that are not mapped yet with similar
concrete entities already mapped to hypothesized entities.

To assess the creation of product lines, Stoermer and
O’Brien introduce the MAP method [149]. MAP combines:

1) a bottom-up process to recover the concrete architectures of

existing products, 2) a top-down process to map architectural

styles onto recovered architectural views, and 3) an approach

to analyze commonalities and variabilities among recovered

architectures. They stress the ability of architectural styles to

act as the structural glue of the components, and to highlight

architecture strengths and weaknesses.
Other hybrid processes include Focus [24], [104] and

Nimeta [134], ManSART [60], [181], ART [43], X-Ray [107],

ARM [57], and DiscoTect [180]. In ManSART, a top-down

recognition engine maps a style-compliant conceptual view

with a system overview defined in a bottom-up way using a

visualization tool [60], [181]. Pinzger et al. [129] present an

approach to recover architecture for product families; they

first determine the architectural views and concepts, and

then recover and assess the architecture using the Pulse-

DSSA process [2].
As with any classification, the borders are fuzzy. For

example, if the refinement step of a bottom-up approach is

complex, we could categorize this approach as hybrid. We

believe that this is not a real problem since the distinction

still introduces important structure and flow to categorize

the works. From Table 2, we can see that the three processes

are represented in equal proportions.
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6 SAR INPUTS

Most often, SAR works from source code representations,
but it also considers other kinds of information, such as
dynamic information extracted from a system execution, or
historical data held by version control system repositories.
A few approaches work from architectural elements such as
styles or viewpoints. There is no clear trend because SAR
approaches are fed with heterogeneous information of
diverse abstraction levels. From Table 3, we first present
the nonarchitectural inputs, then the architectural inputs.

6.1 Nonarchitectural Inputs

6.1.1 Source Code Constructs

The source code is an omnipresent trustworthy source of
information that most approaches consider. Some of the
approaches directly query the source code using regular
expressions like in RMTool [114], [115] or Revealer [127],
[128]. However, most of them do not use the source code
text but represent it using metamodels. These metamodels
cope with the paradigm of the analyzed software. For
instance, the language-independent metamodel FAMIX is
used to reverse engineer object-oriented applications [23];
its concepts include classes, methods, calls, or accesses.
FAMIX is used in ArchView [126], Softwarenaut [98], and

Nimeta [134]. Other metamodels such as the Dagstuhl
Middle Metamodel [94] or GXL [65] have been proposed
with the same intent of abstracting the source code.

6.1.2 Symbolic Textual Information

Some approaches use the symbolic information available in
the comments [127], [128] or in the method names [89],
[102]. Anquetil and Lethbridge recover architecture from
the source file names [4].

6.1.3 Dynamic Information

Static information is often insufficient for SAR since it only
provides a limited insight into the runtime nature of the
analyzed software; to understand behavioral system prop-
erties, dynamic information is more relevant [90]. Some
SAR approaches use dynamic information alone [180],
while others mix static and dynamic knowledge [69], [95],
[126], [132], [135], [166]. Walker et al. map dynamic
information to architectural views [167]. Lots of approaches
using dynamic information extract design views rather than
architecture [58], [59], [82], [132], [156]. Huang et al.
consider runtime events such as method calls, CPU
utilization, or network bandwidth consumption because it
may inform reverse engineers about system security
properties or system performance aspects [69]. DiscoTect
uses dynamic information too [180]. Li et al. use runtime
process information to derive architectural views [95]. Some
works focus on dynamic software information visualization
[27], [72], [156]; to get a more precise analysis of these, we
refer the reader to the survey of Hamou-Lhadj and
Lethbridge [59]. Bojic and Velasevic [10] use dynamic
information extracted from use cases to identify packages
and architectural views. Dynamic information is also used
to identify features [35], [52], [137], design patterns [63],
[168], or collaborations and roles [133], [176].

6.1.4 Physical Organization

The physical organization of applications in terms of files and
folders often reveals architectural information. ManSART
[60], [181] and Softwarenaut [98] work from the structural
organization of physical elements such as files, folders, or
packages. Some approaches map packages or classes to
components and use the hierarchical nature of the physical
organization as architectural input [91], [130], [177].

6.1.5 Human Organization

According to Conway’s thesis: “Organizations which design
systems are constrained to produce designs which are copies of the
communication structures of these organizations” [22]. It is then
important to consider the influence of the human organiza-
tion on the extracted architectures or views. Inspired by
this, Bowman and Holt use the developer organization to
form an ownership architecture that helps stakeholders to
reconstruct the software architecture [11].

6.1.6 Historical Information

Historical information is rarely used in SAR. Wuyts [179]
worked on the coevolution between code and design.
ArchView is a recent approach that exploits source control
system data and bug reports to analyze the evolution of
recovered architectural views [126]. Mens et al. analyze the
evolution of extracted software views with Intensive [109],
[179]. To assist a reverse engineer in understanding
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dependency gaps in a reflexion model, Hassan and Holt
[61], Murphy et al. [114], and Murphy [115] annotate entity
dependencies with sticky notes. These sticky notes record
dependency evolution and rationale with information
extracted from version control systems. ArchEvo produces
views of the evolution of modules that are extracted from
source code entities [130].

6.1.7 Human Expertise

Although one cannot entirely trust human knowledge, it is
very helpful when it is available. At high abstraction levels,
SAR is iterative and requires human knowledge to guide it
and validate results. To specify a conceptual architecture
[61], [104], [114], reverse engineers have to study system
requirements, read available documentation, interview
stakeholders, recover design rationale, investigate hypoth-
eses, and analyze the business domain. Human expertise is
also required when specifying viewpoints, selecting archi-
tectural styles (Section 6.2), or investigating orthogonal
artifacts (Section 4.2). While SAR processes involve strategy
and knowledge of the domain and the application itself,
only a few approaches take human expertise explicitly into
account. Ivkovic and Godfrey [71] propose to systematically
update a knowledge base that would become a helpful
collection of domain-specific architectural artifacts.

6.2 Architectural Inputs

Architectural styles and viewpoints are the paramount of
software architecture, we analyzed whether SAR approaches
consider them as input to steer the extraction process. Some
tools such as SAVE [111] take as input a mapping and
architectural elements and apply the Reflexion Model (see
Section 5.2). Even if it is not exactly an SAR process, the Pulse
approach produces a reference architecture by applying
generic scenarios [2]. It works from domain models consist-
ing of a decision model and generic work products, and was
applied to statically evaluate architectures [82].

6.2.1 Styles

Architectural styles such as pipes and filters, layered
system, and data flow are popular because like design
patterns, they represent recurrent architectural situations
[16]. They are valuable, expressive, and accepted abstrac-
tions for SAR and more generally for software under-
standing. Examples of architectural styles are pipes and
filters, blackboard, and layers.

Recognizing them is, however, a challenge because they
span several architectural elements and can be implemen-
ted in various ways [127], [128]. The question that turns up
is whether SAR helps reverse engineers specify and extract
architectural styles.

Examples. In Focus, Ding and Medvidovic [24] and
Medvidovic and Jakobac [104] use architectural styles to
infer a conceptual architecture that will be mapped to a
concrete architecture extracted from the source code.

Closely related to this work, Medvidovic et al. introduce
an approach to stop architectural erosion. In a top-down
process, requirements serve as high-level knowledge to
discover the conceptual architecture [105]. In a bottom-up
process, system implementation serves as low-level knowl-
edge to recover the concrete architecture. Both the
conceptual and the concrete architectures are incrementally
built. The reverse engineer reconciles the two architectures,

based on architectural styles. Their approach considers
architectural styles as key design idioms since they capture
a large number of design decisions, their rationale,
effective compositions of architectural elements, and
system qualities that will likely result from using the style.

DiscoTect reconstructs style-compliant architectures
[180]. Using a state machine, DiscoTect incrementally
recognizes interleaved patterns in filtered execution traces
of the application. The state machine represents an
architectural style; by refining it, the reverse engineer
defines which hypothesized architectural style the tool
should look for [155].

ManSART [60], [181], ART [43], and MAP [149] are other

SAR approaches taking architectural styles into account.

6.2.2 Viewpoints

The system architecture acts as a mental model shared
among stakeholders [66]. Since the stakeholders’ interests
are diverse, viewpoints are important aspects that SAR may
consider [70], [146]. Viewpoint catalogues were built to
address this issue: the 4þ 1 viewpoints of Kruchten [88], the
four viewpoints of Hofmeister et al. [64], Soni et al. [148], the
build-time viewpoint introduced by Tu and Godfrey [164],
or the implicit viewpoints inherent to the UML standard.
Most SAR approaches reconstruct architectural views
according only to a single or a few preselected viewpoints.
Smolander et al. highlight that viewpoints cannot be
standardized but should be selected or defined according
to the environment and the situation [146]. O’Brien et al.
present the View-Set Scenario pattern that helps one to
determine which architectural views sufficiently describe
the system and cover the stakeholders’ needs [119].

Examples. The Symphony approach of van Deursen et al.

aims at reconstructing software architecture using appro-

priate viewpoints [165]. Viewpoints are selected from a
catalogue or defined if they don’t exist, and evolve through-

out the process. They constrain SAR to provide architectural

views that match the stakeholders’ expectations, and ideally,

are immediately usable. The authors show how to define
viewpoints step by step and apply their approach on four case

studies with different stakeholder goals. They provide

architectural views to reverse engineers following the view-

points these reverse engineers typically use during design
phases. Riva proposed a view-based SAR approach called

Nimeta based on Symphony [134]. Nimeta is a full SAR

approach that uses the Symphony methodology to define

viewpoints.
Favre outlines a generic SAR metamodel-driven ap-

proach called Cacophony [39]. Like Symphony, Cacophony

recognizes the need to identify the viewpoints that are

relevant to the stakeholders’ concerns and that SAR must

consider. Contrary to Symphony, Cacophony states that
metamodels are keys for representing viewpoints: They

specify the language that views have to conform to.
The QADSAR approach both reconstructs the architec-

ture of a system and drives quality attribute analyzes on it

[150], [151]. To identify the relevant architectural viewpoints,
reverse engineers formulate scenarios that highlight inter-

esting quality attributes of the system. ARES [36] and

SARTool [41], [86] also take viewpoints into account.
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6.3 Mixing Inputs

Most approaches work from a limited source of informa-
tion, even if multiple inputs are necessary to generate rich
and different architectural views. Kazman and Carrière
advocate the fusion of multiple sources of input to produce
richer architectural views: for example, they produce
interprocess communication and file access views [75].
Lange and Nakamura mix dynamic and static views to
support design pattern extraction [90].

ArchVis [62] uses source code, dynamic information
such as network logs or messages sent, and file structures.

Knodel et al. [82] discuss the combination of different
information sources such as documents, source code, and
historical data. However, it is not clear whether the
approach was used in practice. Multiple inputs must be
organized, and Ivkovic and Godfrey propose a systematic
way to organize application domain knowledge into a
unified structure [71].

7 SAR TECHNIQUES

There are a variety of formalisms used to represent, query,
and exchange the data representing applications [26], [50],
[135]. A couple of exchange formats exist from simple
textual tuples in RSF [173] or in TA [12], [42], [67], [144] to
XML in GXL [33], [65], [134] or to CDIF in FAMIX [23]. The
format may limit the merging or manipulation of the
information it represents [26]. An important property of an
exchange format is that it can be easily generated and used
with simple tools [25].

SAR techniques are often correlated with the data they
operate on: for example, Mens et al. express logic queries on
facts [109], [179], while Ebert et al. perform queries on graphs
[33]. Thus, instead of using data formalisms as a criterion, we
classify techniques into three automation levels:

Quasi-manual. The reverse engineer manually identifies
architectural elements using a tool to assist him to under-
stand his findings.

Semiautomatic. The reverse engineer manually instructs
the tool how to automatically discover refinements or
recover abstractions.

Quasi-automatic. The tool has the control and the
reverse engineer steers the iterative recovery process.
Of course, the boundaries in the classification are not clear-
cut and the categories are not mean to be exclusive.
Moreover, reverse engineers often use visualization tools
to understand the results of their analyzes, but a comparison
of the visualization tools is beyond the scope of this paper.
Table 4 synthesizes the classification of SAR techniques.

7.1 Quasi-Manual Techniques

SAR is a reverse engineering activity which faces scalability
issues in manipulating knowledge. In response to this
problem, researchers have proposed slightly assisted
techniques; we group these into two categories: construc-
tion-based techniques and exploration-based techniques.

7.1.1 Construction-Based Techniques

These techniques reconstruct the software architecture by
manually abstracting low-level knowledge, due to inter-
active and expressive visualization tools—Rigi [113], [173]

CodeCrawler [92], Shrimp/Creole [152], [177], Verso [91],

3D [101], or GraphViz [47].

7.1.2 Exploration-Based Techniques

These techniques give reverse engineers an architectural

view of the system by guiding them through the highest

level artifacts of the implementation, like in Softwarenaut

[98]. The architectural view is then closely related to the

developer’s view.
Instead of providing guidance, the SAB browser allows

reverse engineers to assign architectural layers to classes,

and then, to navigate the resulting architectural views [37].
ArchView1 visualizes simple architectural elements and

their relationships in 3D [40].

7.2 Semiautomatic Techniques

Semiautomatic techniques automate repetitive aspects of

SAR. The reverse engineer steers the iterative refinement

or abstraction, leading to the identification of architectural

elements.
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7.2.1 Abstraction-Based Techniques

These techniques aim to map low-level concepts with high-
level concepts. Reverse engineers specify reusable abstrac-
tion rules and execute them automatically. The following
approaches were explored:

Relational queries. Often, relational algebra engines
abstract data out of entity-relation databases. Dali uses SQL
queries to define grouping rules [74], [78], [74]; so does
ARMIN [79], [120]. Relational algebra defines a repeatable set
of transformations such as abstraction or decomposition to
create a particular architectural view. Gupro queries graphs
using a specialized declarative expression language called
GReQL [33]. Rigi is based on graph transformations written in
Tcl [113], [173]. In PBS/SBS, Holt proposes the Grok relational
expression calculator to reason about software facts [67]. It is
based on Tarsky’s relational algebra and as such is different
from SQL-like queries. Feijs et al. [41] and Krikhaar [86]
present an SAR approach based on an extension of relational
algebra. The ArchView abstraction algorithm combines
relational algebra with metrics [126].

Logic queries. Logic queries are powerful because of the
underlying unification mechanism which allows the writing
of dense multivalued queries. Guéhéneuc et al. [55], Kramer
and Prechelt [85], and Wuyts [178] use Prolog queries to
identify design patterns. Mens and Wuyts use Prolog as a
metaprogramming language to extract intensional source
code views and relations in [109], [179]. Richner and Ducasse
also chose a logic-query-based approach to reconstruct
architectural views from static and dynamic facts [132].

Programs. Some approaches build analyzes as plain
object-oriented programs. For example, the groupings made
in the Moose environment are performed as object-oriented
programs that manipulate models representing the various
inputs [28].

Lexical and structural queries. Some approaches are
directly based on the lexical and structural information in
the source code. Pinzger and coworkers state that some hot
spots clearly localize patterns in the source code and
consider them as the starting point of SAR [127], [128]. To
drive a pattern-supported architecture recovery, they
introduce a pattern specification language and the Revealer
tool. RMTool identifies architectural elements and relations
using lexical queries [114], [115]. The Searchable Bookshelf
is a typical example of supporting navigation via queries
[144]. Argo design critics uses Java predicates to auto-
matically assess the current architecture of a system [136].

ArchVis supports multiple inputs (files, programs, and
Acme information), uses static and dynamic information
(program execution but also log files and network traffic),
and provides different views to specific stakeholders
(component, developer, and manager views) [62].

7.2.2 Investigation-Based Techniques

These techniques map high-level concepts with low-level
concepts. The high-level concepts considered cover a wide
area from architectural descriptions and styles to design
patterns and features. Explored approaches are:

Recognizers. ManSART [60], [181], ART [43], X-Ray [107],
ARM [57], and [44] are based on recognizers for architectural
styles or patterns written in a query language. The tools then

report the source code elements matching the recognized
structures. More precisely, pattern definitions in ARM are
progressively refined and finally transformed in SQL queries
exploitable in Dali [74], [78]. The design patterns extraction
approaches fit in this category (see Section 9).

Graph pattern matching. In ARM [57], pattern defini-
tions can also be transformed into graphs pattern to match
with a graph-based source code representation; this is
similar to what Alborz [139] does.

State engine. In DiscoTect, state machines are defined to
check architectural styles conformance [180]. A state engine
tracks the system execution at runtime and outputs
architectural events when the execution satisfies the state
machine description.

Maps. SAR approaches based on the Reflexion Model
[114], [115] use rules to map hypothesized high-level entities
with source code entities. Since these Perl-like rules take plain
source code as input, we could have classified the reflexion
model in the lexical and structural queries group mentioned
previously, but the intention here is really mapping. In SoFi,
Carmichael et al. [17] use naming conventions of files and
folders to automatically group entities.

7.3 Quasi-Automatic Techniques

Purely automated software architecture extraction techni-
ques do not exist. Reverse engineers must still steer the
most automated approaches. Approaches in this area
often combine concept, dominance, and cluster analysis
techniques.

7.3.1 Concepts

Formal concept analysis is a branch of lattice theory used to
identify design patterns [6], features [35], [52], or modules
[143]. Tilley et al. [160] present a survey of work using
formal concept analysis [10], [143], [161].

7.3.2 Clustering Algorithms

Clustering algorithms identify groups of objects whose
members are similar in some way. They have been used to
produce software views of applications. To identify
subsystems, Anquetil and Lethbridge cluster files using
naming conventions [4]. Some approaches automatically
partition software products into cohesive clusters that are
loosely interconnected [3], [100], [163], [169]. Clustering
algorithms are also used to extract features from object
interactions [137]. Christl et al. [20] and Koschke [84]
emphasize the need to refine existing clustering techniques,
first by combining them, and second by integrating the
reverse engineer as a conformance supervisor of the
reconstruction process.

7.3.3 Dominance

In directed graph, a node D dominates a node N if all paths
from a given root to N go through D. In software
maintenance, dominance analysis identifies the related
parts in an application [21], [51]. In the context of software
architecture extraction, adhering to Koschke’s thesis, Trifu
unifies cluster and dominance analysis techniques to
recover architectural components in object-oriented legacy
systems [163]. Similarly, Lundberg and Löwe outline a
unified approach centered around dominance analysis [96].
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On the one hand, they demonstrate how dominance
analysis identifies passive components. On the other hand,
they state that dominance analysis is not sufficient to
recover the complete architecture: It requires other techni-
ques such as concept analysis to take component interac-
tions into account.

7.3.4 Layers and Matrix

Often, applications are built with layers in mind: the lower
layers should not communicate with the upper ones. An
interesting approach for identifying cycles and layers in
large applications is the Dependency Structure Matrix
(DSM) [138], [154]. The Dependency Structure Matrix is
adapted from the domain of process management [154] to
analyze architectural dependencies in software [138].
Dependency structure matrixes show in a compact manner
dependencies between source code entities such as classes
and packages. Bril and Postma use tree cut based on a
component connectivity metric to identify layers in the
application dependency tree structure [13].

8 SAR OUTPUTS

While most approaches focus on identifying and present-
ing software architectures, some provide valuable addi-
tional information, e.g., conformance of architecture and
implementation. Indeed, goals and outputs are clearly
related. In this section, we highlight some points to further
classify the approaches summarized in Table 5.

8.1 Visual Software Views

Several surveys of program visualization tools have been
proposed. Gallagher et al. propose a framework to assess
software visualizations around seven key areas (static
representation, dynamic representation, views, navigation,
task support, implementation, and visualization) and
31 features; however, they applied it to software extraction
tools as well as UML case tools or notations like LePUS [34].
Bassil and Keller propose a survey and analysis of software
visualization [7], they also mention several other surveys.
Here, we do not reproduce such surveys but focus on the
visualization as a possible output of the SAR process.

8.1.1 Supporting Visualization Tools

A lot of approaches offer (architectural) views or use
visualizations as output [45] such as ArchVis [62]. As we
mentioned earlier, several tools such as Rigi [113], [173]
Shrimp/Creole [152], [177], GraphViz [47], or CodeCrawler
[92] are used to visualize graph representations of software
views [42], [74], [84], [127], [134], [139], [140]. Some authors
propose open toolkits to build architectural extractors [122],
[158] or scriptable visualizations [110].

Classifying the outputs of the various visualization
approaches is difficult and outside of the scope of this
paper, but we can still distinguish some groups.

Architecture as boxes. Some visualization approaches
present and group source code entities as boxes using the
tools mentioned above [42], [74], [75], [84], [127], [134],
[139]. For example, the Pulse approach [83] applied the
SAVE tool to extract architectural views by grouping
entities [111], [116].

Source entity visualization. Some tools focus on source
code visualization or abstractions as opposed to true
architectural entities. For example, CodeCrawler [92],
Distribution Map [29], and Package Blueprints [30] present
condensed views of software source code entities. Similarly,
Verso uses 3D to combine more information per entity [91].

Architectural views. Some offer enhanced views that
provide architectural information [98], [109], [126]. In this
context, some approaches improve their visualizations with
2D/3D [40], [101], [122], [158]. Erben and Löhr define
dedicated tool support to represent architectural elements
and layers; for example, the Software Architecture Browser
is a graphical editor dedicated to navigation in layers [37].
Grundy and Hosking propose the SoftArch tool which
supports both static and dynamic visualization of software
architecture components at varying levels of abstraction.
SoftArch copies, annotates, and animates static architectural
views to provide developers with multiple, high-level
execution architectural visualizations [53]. ArchVis [62]
uses multiple sources and representations of architecture to
generate multiple views of software architecture. Pacione
proposed both the architecture-oriented visualization tool
Vanessa and a taxonomy surveying related tools [121].

Orthogonally to this draft classification, and as shown in
Section 6, some SAR approaches focus on the behavior of
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software and use execution traces. Hamou-Lhadj and
Lethbridge [59] surveyed some of the tools supporting
traces visualization. To offer multiple views of an applica-
tion, it is interesting to combine static and dynamic analysis
[27], [62], [90], [132], [157]. Program Explorer supports a
navigation of design pattern elements using execution
traces information [90]. For example, Shimba combines
static and dynamic information to produce high-level views
of Java systems; it displays static information with Rigi
[113], [173] and dynamic information as state diagrams
[157]. Both views are thus displayed separately, but the
reverse engineers can constrain the abstraction of each view
from the other one. Richner and Ducasse propose different
views such as an invocation or instantiation relationships
between high-level components [132].

8.2 Architecture

Since an important goal of SAR approaches is to provide
better understanding of the applications, they tend to
present reconstructed architectural views to stakeholders.
As the code evolves, some approaches focus on the
coevolution of the reconstructed architecture: Intensive
[109], [179] synchronizes the architecture with its imple-
mentation and highlights the differences due to evolution.

Iterative approaches based on the reflexion model [20],
[83], [114], [133] make explicit the absences, convergences,
and divergences between the conceptual architecture and
the architecture that results from mapping source code
elements to architectural elements.

Architecture Description Languages (ADLs) have been
proposed both to formally define architectures and support
architecture-centric development activities [103]. In the
context of SAR, X-Ray uses Darwin [99] to express
reconstructed architectural views [107]. Darwin was also
extended by Eixelsberger et al. [36] in ARES. Acme [50] has
ADL-like features and is used in DiscoTect [180]. Huang et
al. [69] specify architectures with the ABC ADL. They
reconstruct architectural views and express them according
to the ADL language in use to be coherent with an
architecture-centric software development. In addition,
ADL features allow reverse engineers to give information
in an ADL compliant format to improve the SAR process
such as the layouts of architectural views that they have
already produced.

8.3 Conformance

Some approaches focus on determining the conformance of
an application to a given architecture [108]. We distinguish
two kinds of architecture conformance: horizontal confor-
mance between similar abstractions and vertical confor-
mance between different abstraction levels.

Horizontal conformance is checked between two recon-
structed views, or between a conceptual and a concrete
architecture, or between a product line reference architec-
ture and the architecture of a given product. For example,
SAR approaches for product line migration identify
commonalities and variabilities among products, like in
MAP [149]. Sometimes, SAR requires to define a conceptual
architecture and compare it with the reconstructed one [57],
[162]. Sometimes, an architecture must conform to archi-
tectural rules or styles; this was discussed in Nimeta [134],
SARTool [41], [86], Focus [24], [104], and DiscoTect [180].

Argo offers critics that comment the architecture or its
potential problems [136]. Critics may also show low-level
code problems such as wrong usage of abstract classes.

Vertical conformance assesses whether the reconstructed
architecture conforms to the implementation. Both Reflexion
Model-based [114], [115] and co-evolution-oriented [109],
[179] approaches revolve around vertical conformance.

8.4 Analysis

Some approaches perform extra analysis on the extracted
architecture to qualify it or refine it further. Reverse
engineers use modularity quality metrics either to iteratively
assess current results and steer the process, or to get cues
about reuse and possible system improvement [84], [139].

A few SAR approaches propose other analyzes: Arch-
View [126] provides structural and evolutionary views of
a software application. Eixelsberger et al. [36] in ARES
and Stoermer et al. in QADSAR [150], [151] reconstruct
software architectures to highlight properties like safety,
concurrency, portability, or other high-level statistics [69].

Finally, some approaches highlight architectural patterns
or orthogonal artifacts: ARM [57], Revealer [127], [128], or
Alborz [139].

9 ORTHOGONAL OR RELATED ABSTRACTIONS

A large body of work focuses on extracting design or on
reverse engineering applications. It is difficult to clearly
separate these approaches from SAR since architecture has
many forms and design information is important to
characterize architecture. These approaches focus on iden-
tifying artifacts that either support the architecture, such as
design patterns [8], or crosscut the architecture, such as
features and roles. These related artifacts convey important
information about the architecture; this is why we included
them in this survey in a section of their own.

9.1 Design Patterns

Design patterns are important abstractions in programming
and designing applications because they create a common
vocabulary [46]. A design pattern highlights a recurring
problem that arises in a specific design context, and
discusses the possible solutions.

Beck and Johnson derive an architecture from a set of
patterns [8]. Deducing an architecture from patterns records
the design decisions that were made, and hints at their
underlying motivations. Buschman et al. mention that
patterns are useful mental building blocks which compose
and document the architecture [16]. Patterns span several
levels of abstraction from architecture through design to
language and are interwoven with each other. Architectural
patterns or styles express high-level fundamental organiza-
tions of systems; design patterns describe medium-level
structures of communicating components; and language
patterns or idioms present low-level aspects of program-
ming languages. For all these reasons, researchers have
been drawing considerable attention onto design pattern
identification [90]. Guéhéneuc et al. propose a framework to
compare design recovery tools [56].

Shull et al. propose a method to manually identify
workable domain-specific design patterns and create custo-
mized catalogs of the identified patterns [142]. Brown

DUCASSE AND POLLET: SOFTWARE ARCHITECTURE RECONSTRUCTION: A PROCESS-ORIENTED TAXONOMY 585



automatically identifies design patterns using the reflective
capabilities of Smalltalk [15]. Keller et al. promote pattern
analysis as well as human expertise to extract design patterns
[81]. Bergenti and Poggi provide critiques about the design
patterns identified in UML documents [9]. Philippow et al.
promote a design pattern-based approach to reconstruct the
reference architecture of a product line [125].

Several approaches use Prolog to represent and query
source code [85], [178]. Design patterns are then represented
as logic queries. Lange and Nakamura represent both static
and dynamic information as logic facts to generate inter-
active design views and help understanding frameworks
[90]. To extract design patterns that are based on specific
interactions among the pattern participants, like Chain of
Responsibility, researchers investigated dynamic analysis
[63], [168]. One of the main problems in pattern identifica-
tion is the search space. To reduce it, Wendehals [168]
combines static and dynamic analyzes, the first one
reducing the search space of the second one: the static
analysis searches for sets of candidates that respect the
static structure of the design pattern, while the dynamic
analysis monitors candidates and checks whether the
observed interactions satisfy the behavioral rules of the
design patterns [63]. Guéhéneuc and Albin-Amiot used
explanation-based constraint programming to report pro-
blems when failing to identify design patterns [54].
Antoniol et al. propose a multistage reduction strategy:
software metrics and structural properties computed on
design patterns become constraints that design pattern
candidates must satisfy [5]. Guéhéneuc et al. [55] reduce the
search space using metrics to define design pattern
fingerprints of the design pattern participants. A design
pattern has several design variants and can be implemented
in different ways; Niere et al. [117] overcome both problems
with fuzzy logic, and Wendehals [168] rates instance
candidates with fuzzy values to support inexact matches.

9.2 Features and Aspects

A key to software understanding is to locate source code
entities according to the concerns they address. The decom-
position of product families is often driven by the product
features [145], and aspects represent crosscutting abstrac-
tions. While they are not directly related to software
architecture, features often relate to functional requirements,
while aspects often relate to nonfunctional requirements or to
activity crosscutting a system; as such, both features and
aspects provide interesting alternate views on the architec-
ture of an application. However, these concerns are not
explicitly linked to source code entities; in fact, they often
crosscut the system’s physical decomposition, scattered and
tangled throughout its artifacts. Recovering crosscutting
concerns is thus an active research area, but nowadays,
researchers essentially focus their attention on mining
concerns and rarely link their works with SAR, even though
aggregating source code entities around the concerns they
address could be a useful means of abstraction for SAR.

9.2.1 Features

According to Eisenbarth et al. [35], a feature is “an observable
behavior of a system that can be triggered by a user” and a
computational unit is “an executable part of a system.” A

feature in the minds of reverse engineers is implemented
through several computational units in the source code. To
understand how a set of features is implemented, one must
identify the computational units that contribute to these
features and optionally the way they interact together.
Features are high-level knowledge, while computational
units are low-level knowledge. More generally, features acts
as a bridge between the requirements and the architecture
of the system [123]. Therefore, a feature view improves
software understanding by mapping functional require-
ments in the minds of reverse engineers with architectural
elements and indirectly with source code entities. A feature
view could help SAR by hiding implementation details
around features.

The Software Reconnaissance method is a promising
approach in the feature location field [171]. To identify the
computational units related to a given feature, this method
compares computational units invoked by different scenar-
ios which trigger or not this feature. In a similar way, Wong
et al. proposed an approach that analyzes execution slices of
different scenarios [174]. Chen et al. outlined a human-
guided approach [19], [172]: Assisted by a tool, a reverse
engineer explores a statically derived dependency graph
and iteratively decides whether each considered computa-
tional unit is relevant to the feature or not.

Eisenbarth et al. combine static and dynamic analyzes to
derive the map linking features with computational units
[35]. Using concept analysis, they obtain a map of relation-
ships between features and computational units; this map is
subject to human interpretation. Finally, they refine the map
by deriving more relevant computational unit sets using
static analysis such as dominance analysis. Salah and
Mancoridis derive a feature map from object interactions;
their method progressively raises the abstraction level from
object interactions to feature interactions [137]. Greevy and
Ducasse characterize features and computational units
according to two complementary perspectives: A feature
perspective and a computational unit perspective [52]. The
approach allows, for instance, a reverse engineer to know
how some computational units participate at the realization
of a given feature.

Pashov and Riebisch promote the use of feature model-
ing to improve SAR [123]. Their feature-oriented approach
iteratively reconstructs the architecture by establishing and
verifying functional and architectural hypotheses. These
hypotheses link features, architectural elements, and source
code entities in cross-referencing tables which are verified
iteratively. Sochos et al. propose a method to offer a
stronger mapping between features and the architecture
based on a series of transformations on the initial product
line feature. Architectural components are derived during
the transformations and encapsulate the business logic of
each transformed feature [147].

9.2.2 Aspects

Aspect mining receives a lot of attention currently. As said
above, concerns often crosscut the implementation; aspect
mining is the reverse engineering process which aims to find
and isolate these crosscutting concerns. It is mainly explored
to better understand a piece of software or to refactor it in an
aspect-oriented one. Since there are already several surveys
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of the subject [18], [80], [118], we do not cover it here. It is,
however, worth mentioning that there are no approaches
linking mining aspects with architecture extraction.

9.3 Collaborations and Roles

To understand an object-oriented application, one must
understand the collaborations and the roles that objects play
[131], [176]. Collaborations are goal-oriented interactions
between participants, while roles describe the participants’
responsibilities in a collaboration. Richner and Ducasse [133]
focused on recovering collaborations and roles of objects and
indirectly of classes. De Hondt [68] proposes collaboration
contracts as a basis to control the evolution of collaborations.

Some approaches deduce class collaborations by visua-
lizing object interactions [59]. Richner and Ducasse propose
an approach to recover collaborations and roles that does,
however, not rely on visualization techniques; they work
from both dynamic information and human expertise [133].
Pattern matching tools extract collaboration patterns from
execution traces that record method invocation information.
To only focus on relevant class collaborations and roles,
reverse engineers then steer the process through querying
and visualization facilities. Wu et al. applied a closely
related approach to procedural legacy systems [176].

10 DISCUSSION

Here are some general points that appeared to us out of this
survey. A lot of approaches visualize software entities but
few work from diverse information or even take advantage
of having different kinds of information. Several times, this
paper stresses the need to provide a large variety of views
at different levels of abstraction. We advocate that view-
points should be defined consistently. SAR must integrate
in an environment that provides reverse engineers with
views at different levels of abstraction and means to
navigate horizontally and vertically. To fulfill this require-
ment, we state that a mechanism is required to express
viewpoints consistently whatever the level of abstraction of
the views they respectively describe. In this perspective, the
metamodel-based SAR outlined by [39] is promising.

Lots of works focus on extracting design information such
as design patterns but stop building on this knowledge up to
the architectural level. Similarly, few works bring together
features and architectural information.

Because it is complex to extract architectural components
from source code, these are often simply mapped to
packages or files. Even if this practice is understandable,
we think that it limits and overloads the term component.

We see that few works really take into account
architectural styles. This may be the result of having
different communities working on architectural description
languages and maintenance.

SAR is complex and time-consuming. The iterative
aspects of SAR imposed themselves as a key point to ensure
a successful reconstruction. Now, to reach a high-level of
maturity in leading such an activity, we advocate that SAR
has to support coevolution and conformance mechanisms.
Indeed, both horizontal and vertical conformance help the
reverse engineer to bring all the recovered views face to
face. This confrontation allows reverse engineers to refine
views iteratively, to identify commonalities and variabilities
among views (especially if they represent product lines

architecture), to lead impact analysis, or still to update

views when the system evolves.
Since successful systems are doomed to continually

evolve and grow, SAR approaches should support coevolu-

tion mechanisms to keep all recovered views synchronized

with the source code. The logic-based approach of Intensive

proved to be efficient in checking horizontal and vertical

conformance and allowing coevolution [109], [179].

11 CONCLUSION

It is hard to classify research approaches in a complex field

where the subject matter is as fuzzy as software architec-

ture. Still this survey has provided an organization of the

significant fundamental contributions made within soft-

ware architecture reconstruction. To structure the paper, we

followed the general process of SAR: What are the

stakeholders’ goals, how does the general reconstruction

proceed, what are the available sources of information,

based on this, which techniques can we apply, and, finally,

what kind of knowledge does the process provide. We

believe that software architecture is still an important topic

since it is a key abstraction for the understanding of large

industrial applications and their evolutions.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support of

the French National Research Agency (ANR) for the project
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[157] T. Systä, K. Koskimies, and H. Müller, “Shimba—An Environment
for Reverse Engineering Java Software Systems,” Software: Practice
and Experience, vol. 31, no. 4, pp. 371-394, 2001, doi:10.1002/
spe.386.

590 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 4, JULY/AUGUST 2009



[158] A. Telea, A. Maccari, and C. Riva, “An Open Visualization Toolkit
for Reverse Architecting,” Proc. Int’l Workshop Program Comprehen-
sion, pp. 3-13, 2002, doi:10.1109/WPC.2002.1021303.

[159] S.R. Tilley, D.B. Smith, and S. Paul, “Towards a Framework for
Program Understanding,” Proc. Int’l Workshop Program Comprehen-
sion, p. 19, 1996, doi:10.1109/WPC.1996.501117.

[160] T. Tilley, R. Cole, P. Becker, and P. Eklund, “A Survey of Formal
Concept Analysis Support for Software Engineering Activities,”
Proc. Int’l Conf. Formal Concept Analysis, 2003.

[161] P. Tonella, “Concept Analysis for Module Restructuring,” IEEE
Trans. Software Eng., vol. 27, no. 4, pp. 351-363, Apr. 2001.

[162] J. Tran and R. Holt, “Forward and Reverse Repair of Software
Architecture,” Proc. Conf. Centre for Advanced Studies on Collabora-
tive Research, 1999.

[163] A. Trifu, “Using Cluster Analysis in the Architecture Recovery of
OO Systems,” PhD thesis, Univ. of Karlsruhe, 2001.

[164] Q. Tu and M.W. Godfrey, “The Build-Time Software Architecture
View,” Proc. Int’l Conf. Software Maintenance, pp. 398-407, 2001.

[165] A. van Deursen, C. Hofmeister, R. Koschke, L. Moonen, and C.
Riva, “Symphony: View-Driven Software Architecture Recon-
struction,” Proc. Working IEEE/IFIP Conf. Software Architecture,
pp. 122-134, 2004.

[166] A. Vasconcelos and C. Werner, “Software Architecture Recovery
Based on Dynamic Analysis,” Proc. Brazilian Symp. Software Eng.,
2004.

[167] R.J. Walker, G.C. Murphy, J. Steinbok, and M.P. Robillard,
“Efficient Mapping of Software System Traces to Architectural
Views,” Proc. Conf. Centre for Advanced Studies on Collaborative
Research, p. 12, 2000.

[168] L. Wendehals, “Improving Design Pattern Instance Recognition
by Dynamic Analysis,” Proc. Int’l Conf. Software Eng. Workshop
Dynamic Analysis, 2003.

[169] T. Wiggerts, “Using Clustering Algorithms in Legacy Systems
Remodularization,” Proc. Working Conf. Reverse Eng., pp. 33-43,
1997.

[170] N. Wilde and R. Huitt, “Maintenance Support for OO Programs,”
IEEE Trans. Software Eng., vol. 18, no. 12, pp. 1038-1044, Dec. 1992.

[171] N. Wilde and M. Scully, “Software Reconnaisance: Mapping
Program Features to Code,” J. Software Maintenance, vol. 7, no. 1,
pp. 49-62, 1995.

[172] N. Wilde, M. Buckellew, H. Page, V. Rajlich, and L. Pounds, “A
Comparison of Methods for Locating Features in Legacy Soft-
ware,” J. Systems and Software, vol. 65, no. 2, pp. 105-114, 2003,
doi:10.1016/S0164-1212(02)00052-3.

[173] K. Wong, “The Rigi User’s Manual-Version 5.4.4,” technical
report, Univ. of Victoria, 1998.

[174] W.E. Wong, J.R. Horgan, S.S. Gokhale, and K.S. Trivedi, “Locating
Program Features Using Execution Slices,” Proc. IEEE Symp.
Application-Specific Systems and Software Eng. and Technology,
pp. 194-203, 1999, doi:10.1109/ASSET.1999.756769.

[175] S.G. Woods, S. Jercarrière, and R. Kazman, “The Perils and Joys of
Reconstructing Architectures,” SEI Interactive, The Architect, vol. 2,
no. 3, 1999.

[176] L. Wu, H. Sahraoui, and P. Valtchev, “Program Comprehension
with Dynamic Recovery of Code Collaboration Patterns and
Roles,” Proc. Conf. Centre for Advanced Studies on Collaborative
Research, pp. 56-67, 2004.

[177] X. Wu, A. Murray, M.-A. Storey, and R. Lintern, “A Reverse
Engineering Approach to Support Software Maintenance: Version
Control Knowledge Extraction,” Proc. Working Conf. Reverse Eng.,
pp. 90-99, 2004.

[178] R. Wuyts, “Declarative Reasoning about the Structure OO
Systems,” Proc. Technology of Object-Oriented Languages and
Systems, pp. 112-124, 1998.

[179] R. Wuyts, “A Logic Meta-Programming Approach to Support the
Co-Evolution of OO Design and Implementation,” PhD thesis,
Vrije Universiteit Brussel, 2001.

[180] H. Yan, D. Garlan, B. Schmerl, J. Aldrich, and R. Kazman,
“DiscoTect: A System for Discovering Architectures from Running
Systems,” Proc. Int’l Conf. Software Eng., pp. 470-479, 2004.

[181] A.S. Yeh, D.R. Harris, and M.P. Chase, “Manipulating Recovered
Software Architecture Views,” Proc. Int’l Conf. Software Eng., 1997.
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