
Logical Coupling Based on Fine-Grained Change Information

Romain Robbes Damien Pollet Michele Lanza
REVEAL @ Faculty of Informatics — University of Lugano, Switzerland

Abstract

Logical coupling reveals implicit dependencies between
program entities, by measuring how often they changed
together during development. Current approaches use
coarse-grained change information extracted from the ver-
sion control history of the software system under study. En-
tities that are registered as having changed during a com-
mit transaction have their coupling increased by the same
amount, regardless of how and how much they actually
changed. We present several new logical coupling mea-
sures taking into account fine-grained semantic changes.
We evaluate their respective accuracy compared to the clas-
sical logical coupling measure on two case studies; in par-
ticular, we evaluate how well the new measures can esti-
mate logical coupling with less data. Results show that our
approach based on fine-grained information greatly ame-
liorates the state-of-the-art of logical coupling detection.

1 Introduction

Coupling is a measure of how much entities in a soft-
ware system depend on each other. Knowing the coupling
between entities is useful for a variety of development or
management activities, such as maintenance effort predic-
tion or program comprehension [2]. There is a variety of
coupling measurements, usually related to the structure of
the system under study. Coupling can be based on various
program relationships, such as the number of calls between
two entities, variable accesses, or inheritance relationships.
Over the years, several alternative measures of coupling
have been proposed, such as dynamic coupling [1], logical
coupling [4] or conceptual coupling [7].

We focus on logical coupling, which is based on the
change history of entities. The rationale behind logical cou-
pling is that “entities which have changed together in the
past are bound to change together in the future”. Logical
coupling has been used for change prediction [15, 14], and
reverse engineering [3, 6]. While useful, logical coupling
is not as accurate as it could be: It is computed from the
versions of the system archived in a SCM such as CVS or

Subversion (From now on, we refer to this measure of log-
ical coupling as SCM logical coupling). In previous work,
we have shown that using versioning systems for software
analysis has shortcomings [9].

We believe a finer-grained description of the evolution of
a system provides a more accurate measure of logical cou-
pling. SCM logical coupling is imprecise because the finest
resolution is the commit transaction. All files in a trans-
action have their coupling increased by the same amount,
regardless of how and how much they changed.

In this paper, we investigate how much logical coupling
can be improved when using information gathered at de-
velopment time. In previous work, we developed a tool
platform [11] which records all changes made on a sys-
tem while it is being implemented, and stores it in a change
repository [8]. This change information retains the precise
time information of when each change was made, and con-
cerns program-level entities such as classes and methods,
not only files.

The contributions of this paper are:
• Several novel measures of logical coupling at the class

level, using fine-grained change data. These measures
take into account the amount of changes and the pre-
cise date when the changes were performed.
• A comparative evaluation of the new measures with

respect to the initial SCM logical coupling, using the
change history of two case studies, and assessing how
well these measures can estimate logical coupling with
less data.

Structure of the Paper. Section 2 explains the shortcom-
ings of SCM logical coupling, describes its usages and the
approaches that address its shortcomings. Section 3 re-
calls our approach —Change-Based Software Evolution—
to record fine-grained changes as they happen in an IDE.
Section 4 describes the various alternatives to logical cou-
pling we defined based on the fine-grained change infor-
mation. Section 5 details our evaluation procedure to mea-
sure the respective accuracy of the logical coupling mea-
sures. Section 6 discusses our approach, while Section 7
concludes and outlines future work.

1

2 Logical Coupling

Gall et al. first introduced the concept of logical cou-
pling [4] to analyse the dependencies in 20 releases of a
telecommunications switching system. The concept was
soon adopted by other researchers in the context of reverse
engineering and program comprehension. Pinzger used log-
ical coupling as part of his Archview methodology [6] for
architecture reconstruction. D’Ambros visualized logical
coupling with an interactive visualization called the Evo-
lution Radar [3]. Logical coupling has also been used for
change prediction. Zimmermann et al. [15] presented an
approach based on data mining in which co-change patterns
between entities are used to suggest relevant changes in the
IDE, when one entity in the relationship is changed by the
programmer. Ying et al. employed a similar approach [14],
although at a coarser granularity level (Ying’s approach sug-
gests files, while Zimmermann’s employs lightweight pars-
ing to recommend finer-grained entities).

t

A
B
C
D

co
m
m
it

ch
ec
ko
ut

Figure 1. Example development session.

SCM Logical Coupling Loses Information. In this ex-
ample, four entities, A, B, C and D, are modified during a
single development session. The figure shows a timeline for
each entity, with a mark every time the entity was changed
during the session. It is obvious that entities A and B have a
very strong relationship, while entity C and D have a moder-
ate relationship. In addition, the relationships AC, BC, AD
or BD, are weak at best. However, based only on the in-
formation recovered from the version repository, an SCM-
based logical coupling algorithm will give equal values to
each relationship. This means that a large amount of data
is needed before the measure can be accurate. Gall et al.
used the mean co-change as the threshold to establish log-
ical coupling between two entities —in their case, five co-
change occurrences [5]. Similarly, change prediction works
much better for projects with a large history, in “mainte-
nance mode”, rather than in active development [15].

Addressing Information Loss. Zou, Godfrey and Hassan
introduced Interaction Coupling [16]. Interaction coupling
is based on IDE monitoring, like our approach, and records
navigation and edition events during development sessions.
These events are counted at the file level, and the number
of context switches between two files is the measure of in-
teraction coupling. The measures are also classified in three

categories: co-change (the two files changed at least once
together), change-view (one of the files changed, while the
other was consulted) and co-view (the two files were viewed
together). Although the sequence of events is taken into ac-
count, the exact date of each event is not. In the same fash-
ion, the nature of the edits is not considered either.

Our approach bears some similarity with Zou’s, as they
both require IDE monitoring. However our approach con-
siders only changes to the system, but records both the con-
tent of the change, and the exact date at which the change
occurs. Thus we can replicate their measurement if we only
consider co-change relationships, which would enable us to
compare it with standard logical coupling.

3 Change-Based Software Evolution

Our logical coupling measures are based on data gath-
ered during our previous work on change-based software
evolution (CBSE) [10]. CBSE models software changes as
first-class entities. Instead of files, CBSE models the evo-
lution of actual program entities; and instead of relying on
the developer to take snapshots, CBSE monitors changes in
the IDE as they happen.

Our tool silently records the history of abstract syn-
tax tree changes, down to individual expressions. Atomic
changes record apply/undo data, author, and precise times-
tamp. The tool also groups them into larger-grained
changes, from editions leading to legal code —the granular-
ity considered thereafter— up to automated transformations
or developer sessions. Space lacks to describe the approach,
but a more complete account can be found in [10]. Of note,
our recording is non-instrusive: The only interaction with
the user is when our monitoring plug-in occasionaly asks
the user to upload some data.

4 Logical Coupling Measurements

In the following, for any program entity a and session
s, we note δa for any change concerning a —directly or
through child entities, i.e., changes to a method concern its
class— and sa = {δa ∈ s}. We compute the long-term
coupling a ! b between two entities by aggregating a per-
session coupling measure over the history or an interval of
sessions:

a
hist
! b

def
=

∑
s∈hist

a
s

! b

The various coupling measures each define their own s
!, as

shown in Table 1; we now explain their intuitive meaning.

SCM Logical Coupling (LC). This is the logical cou-
pling measurement introduced by Gall et al.. Two entities

2

Logical (LC): Occurrences of co-change of two entities in a session.

a
LC
! b

def
=

(
1 if a and b changed during s;
0 otherwise.

Change-based (CC): How much entities co-changed during a session.

a
CC
! b

def
=
“Q

sa×sb
|sa| · |sb|

”1/|sa×sb|

Interaction (IC): Interleaving of sequential changes.

a
IC
! b

def
= |sa × sb| with δa and δb successive

Time-based (TC): Proximity in time of changes in a session.

a
TC
! b

def
= max

“
0, 1− 1

|sa×sb|
P

sa×sb
|∆t(δa, δb)|

”
Table 1. Per-session coupling contributions.

are related if they change during the same session. A thresh-
old of five co-change occurrences is often used to qualify
entity as logically coupled.

Change-based Coupling (CC). Entities that change
many times during a session are more coupled than those
which only changed occasionally. We define a session as a
period of continuous programming activity without breaks
lasting longer than one hour. Change-based coupling CC is
similar to the previous LC measure except that the number
of changes for each entity is factored into the measure.

Interaction Coupling (IC). This is the coupling intro-
duced by Zou et al., although we consider only the code
changes and ignore the navigation events. Each time an en-
tity changes, it becomes the entity in focus. The coupling
between A and B is equal to the number of times the focus
switched from A to B or from B to A. It is then rounded be-
tween zero and one, based on whether the number of con-
text switches is more or less than the average of context
switches.

Time-based Coupling (TC). If two entities changed si-
multaneously, their relationship is stronger than if one
changed at the beginning of the session and the other at the
end. The coupling linearly decreases with the average delay
between changes, from 1 if all changes happened simulta-
neously to zero if they happened one hour apart or more
—this delay being the minimum session gap.

5 Comparative Evaluation

Prediction. The amount of data needed by logical cou-
pling is one of the reasons logical coupling is used more for
retrospective analysis, rather than forward engineering. In
plain words, if there is not enough data, the measure is use-
less. For example, Zou et al. mention in their study, that the
classic measure was unable to find any coupling relation-
ship from a one-month period of data. On the other hand,

the coupling they defined did work on shorter periods than
the classic logical coupling.

Since we have a longer period of data, we can compare
more formally the predictive power of the coupling mea-
sures by proceeding as follows:
• Measure the SCM logical coupling (LC) between

classes of the system, ignoring relationships below the
threshold coupling value used in [5], which is 5. This
constitutes the expected set E.
• For each measure m (CC, IC and TC), measure the

coupling of each relationship for each session. This
coupling is between 0 and 1. If a relationship’s cou-
pling is above a certain threshold tr, put the relation-
ship in a candidate set C1m,tr. We filter out relation-
ships where an entity has changed less than 5 times
overall, since we can not predict anything for these.
• Repeat this procedure for two or three sessions, i.e.,,

the threshold for a relationship has to be crossed in two
(respectively three) sessions in the history. These con-
stitutes candidate sets C2m,tr and C3m,tr.

We define the precisionP and recallR for a candidate set
C, with respect to the expected set E, as: P = |E ∩C|/|C|
and R = |E ∩ C|/|E|. Precision and recall come from
information retrieval and give an idea of the accuracy of a
prediction [13]. The recall expresses the number of false
negatives given by the measure: It is the proportion of ex-
pected entities that were predicted. If all the expected enti-
ties are predicted, the recall is 1. The precision evaluates the
number of false positives in the prediction: It is the propor-
tion of predicted entities that were wrong. If only entities in
the expected set are predicted, the precision is 1.

These measures allow us to determine which coupling
is the best at estimating the logical coupling with a limited
amount of information.

Convergence. Another useful indicator is the rapidity of
convergence of the measure: We want to estimate how well
a measure identifies coupling from a few recent sessions
as opposed to the whole history up to that point in time.
We thus compare two measures based on the entities they
identify as most coupled to a set of entities of interest, in a
three-step process:

1. We extract a sample of “interesting” entities among the
most coupled according to the few recent sessions;

2. For each interesting entity, we get two “neighbours”
lists of the entities it is most coupled with, one from
only the recent sessions and the other from all the past
history;

3. We compute the Spearman correlation [12] between
pairs of neighbour lists, averaged over the set of in-
teresting entities.

Since the Spearman correlation measures differences in
order, this method indicates how much two measures agree

3

0 1

1

precision

re
ca

ll

1 session•••••••••
•◦
◦◦◦◦◦◦◦◦◦

?

?????????

2 sessions
••••••••

•
•◦

◦◦◦◦◦◦◦◦◦

?

????
?????

3 sessions

•••••••
•
•
•◦ ◦◦◦◦◦◦◦◦◦

?
????? ????

• TC ◦ IC ? CC

Figure 2. Precision and recall of time, inter-
action and change coupling.

about the relative intensities of interesting–neighbour cou-
plings. This matches the scenario of a developer who needs
to compare couplings with the entities (s)he’s working on,
while accommodating the constraint of partial information.
At various points along the development history, we thus
measured the coupling using only a few recent sessions, to
compare it with the coupling measured using all past ses-
sions at that point. If both couplings agree, it means that the
measure quickly approximates the final coupling from lim-
ited data. Of course, a limited number of sessions will only
concern a subset of all entities, so the coupling approxima-
tion can only be correct for this subset of entities.

Case Studies. We compared the coupling measures over
the change histories of two projects. The first of those is
SpyWare, the tool suite we have built in the recent years.
For this study we selected the first two years of development
of SpyWare, representing 360 sessions of development for
a total of more than 16,000 changes across several hundred
classes. The total code size of the prototype was around
20,000 lines of code at the time it was measured. The sec-
ond project is Software Animator, a 5 kLOC system written
in Java over 134 sessions and a period of three months, ob-
tained via the Eclipse version of our plugin.

Prediction Results. We ran the prediction algorithm for
TC, IC and CC, the expected set being computed with LC.
We ran it with one, two or three sessions of information. We
selected candidates using thresholds from 0.5 to 0.95, with
a 0.05 increment. Figure 2 shows the results for SpyWare.

Increasing the threshold increases the precision and de-
creases the recall. Requiring more sessions of information
also has the same effect. Time Coupling has far more pre-
dictive power than the other measures we defined, espe-
cially if considering that recall is more important than pre-
cision in practice —developers will ignore false positives
easily but need the measure to identify as many coupled en-
tities as possible. Time Coupling tends to be less precise but
with much higher recall than the other measures.

To formally elect the best coupling measures, we com-

bine precision and recall into the F -measure, defined as
their weighted harmonic mean:

Fβ =
(1 + β2) · P ·R
β2 · P +R

Common variations from β = 1 give a stronger weight to
precision (β = 0.5), or to recall (β = 2). The coupling mea-
sures with the best F values are shown in Table 2. Time-
based coupling is still the clear winner here, even according
to F0.5 in SpyWare.

1 session 2 sessions 3 sessions

SpyWare
F0.5 TC (0.95) TC (0.90) TC (0.75)
F TC (0.95) TC (0.85) TC (0.60)
F2 TC (0.90) TC (0.60) TC (0.50)

Software
Animator

F0.5 CC (0.60) CC (0.55) TC (0.50)
F CC (0.55) TC (0.50) TC (0.50)
F2 TC (0.50) TC (0.50) TC (0.50)

Table 2. Best coupling prediction according
to the F-measure variants.

Convergence Results. Table 3 shows the agreement be-
tween coupling computed only from the three most recent
sessions, and the same measure computed from all sessions
back to the start of the history. The agreement values range
from 1 (same entities, same order) down to −1 (same en-
tities, reverse order). Zero agreement means there were no
common entities or that their order was not correlated. Here
too, time-based coupling has higher agreement on average.

Coupling Measure SpyWare Software Animator

Logical (LC) 0.33 0.31
Change (CC) 0.27 0.14
Interaction (IC) 0.34 0.30
Time-based (TC) 0.79 0.83

LC

CC

IC

TC

Table 3. Average convergence agreements,
and graphs for SpyWare.

4

6 Discussion

Number of Systems. Our tests were performed on only
two systems of moderate size. Still, we can somewhat gen-
eralize our results because they cover two different IDEs
and languages.

Recording. Our fine-grained coupling measures requires
recording the change history of systems from the IDE. It can
thus not be applied if that information has been lost. This
limits the short-term applicability of the approach to new
systems.

Precision. The disadvantages mentioned above are offset
by the improved accuracy of the measurement. When more
accurate information is taken into account, the logical cou-
pling is more stable, and can thus be used earlier on to make
predictions. SCM logical coupling is often used for retro-
spective analyses when the history is considerable. We pro-
vided initial evidence that more detailed measures provide
useful results earlier.

7 Conclusion and Future Work

SCM logical coupling has shortcomings due to the lack
of accurate information found in these archives. This forces
SCM logical coupling to give the same importance to each
entity changed in a given transaction. To have more pre-
cise data, a larger history is needed. By using fine-grained
information recorded in the IDE, we were able to measure
logical coupling with more precision, effectively giving a
different weight to the relationships between entities in the
same session.

We defined several distinct logical couplings measuring
different aspects of the fine-grained change information and
performed a comparative evaluation of several logical cou-
pling measures. We showed that using data recorded in
the IDE allows one to predict logical coupling relationships
with a lesser amount of history. In particular, we found that
the most stable measure among the ones we tested (i.e., the
one which gives the most accurate measure with the least
amount of data), is the Time Coupling.

This work can be extended by comparing our measures
with other ones like static, conceptual, or dynamic coupling;
we could merge coupling values obtained from short-term
data with navigation information to predict changes or assist
IDE navigation.

Acknowledgments. We gratefully acknowledge the financial
support of the Swiss National Science foundation for the project
“REBASE” (SNF Project No. 115990).

References

[1] E. Arisholm, L. C. Briand, and A. Foyen. Dynamic coupling
measurement for object-oriented software. IEEE Transac-
tions on Software Engineering, 30(8):491–506, 2004.

[2] L. C. Briand, J. W. Daly, and J. K. Wüst. A Unified
Framework for Coupling Measurement in Object-Oriented
Systems. IEEE Transactions on Software Engineering,
25(1):91–121, 1999.

[3] M. D’Ambros and M. Lanza. Reverse engineering with log-
ical coupling. In Working Conference on Reverse Engineer-
ing (WCRE), pages 189 – 198, 2006.

[4] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical
coupling based on product release history. In International
Conference on Software Maintenance (ICSM), pages 190–
198. IEEE Computer Society Press, 1998.

[5] H. Gall, M. Jazayeri, and J. Krajewski. CVS release history
data for detecting logical couplings. In International Work-
shop on Principles of Software Evolution (IWPSE), pages
13–23. IEEE Computer Society Press, 2003.

[6] M. Pinzger. ArchView — Analyzing Evolutionary Aspects of
Complex Software Systems. PhD thesis, Vienna University
of Technology, 2005.

[7] D. Poshyvanyk and A. Marcus. The conceptual coupling
metrics for object-oriented systems. In International Con-
ference on Software Maintenance (ICSM), pages 469–478.
IEEE Computer Society Press, 2006.

[8] R. Robbes. Mining a change-based software repository.
In International Workshop on Mining Software Repositories
(MSR), page 15. ACM Press, 2007.

[9] R. Robbes and M. Lanza. Versioning systems for evolution
research. In International Workshop on Principles of Soft-
ware Evolution (IWPSE), pages 155–164. IEEE Computer
Society Press, 2005.

[10] R. Robbes and M. Lanza. A change-based approach to soft-
ware evolution. Electronic Notes in Theoretical Computer
Science (ENTCS), 166:93–109, Jan. 2007.

[11] R. Robbes and M. Lanza. Spyware: A change-aware de-
velopment toolset. In International Conference in Software
Engineering (ICSE), pages 847–850. ACM Press, 2008.

[12] C. Spearman. The proof and measurement of associa-
tion between two things. American Journal of Psychology,
(15):72–101, 1904.

[13] C. van Rijsbergen. Information Retrieval. Butterworth, 2nd
edition, 1979.

[14] A. Ying, G. Murphy, R. Ng, and M. Chu-Carroll. Predicting
source code changes by mining change history. Transactions
on Software Engineering, 30(9):573–586, 2004.

[15] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes. In Inter-
national Conference on Software Engineering (ICSE), pages
563–572. IEEE Computer Society Press, 2004.

[16] L. Zou, M. W. Godfrey, and A. E. Hassan. Detecting in-
teraction coupling from task interaction histories. In Inter-
national Conference on Program Comprehension (ICPC),
pages 135–144, 2007.

5

