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Abstract

Large object-oriented applications are structured over
large number of packages. Packages are important but com-
plex structural entities that may be difficult to understand
since they play different development roles (i.e., class con-
tainers, code ownership basic structure, architectural ele-
ments...). Maintainers of large applications face the problem
of understanding how packages are structured in general
and how they relate to each others. In this paper, we present
a compact visualization, named Package Surface Blueprint,
that qualifies the relationships that a package has with its
neighbours. A Package Surface Blueprint represents pack-
ages around the notion of package surfaces: groups of rela-
tionships according to the packages they refer to. We present
two specific views one stressing the references made by a
package and another showing the inheritance structure of
a package. We applied the visualization on two large case
studies: ArgoUML and Squeak.

This paper makes heavy use of colors in the figures. Please
obtain and read an online (colored) version of this paper to better
understand the ideas presented in this paper.

1 Introduction

To cope with the complexity of large software systems,
applications are structured in subsystems or packages. It
is now frequent to have large object-oriented applications
structured over large number of packages. Ideally, packages
should keep as less coupling and as much cohesion as possi-
ble [25, 5], but as systems inevitably become more complex,
their modular structure must be maintained. It is thus useful
to understand the concrete organization of packages and their
relationships. Packages are important but complex structural
entities that can be difficult to understand since they play

∗We gratefully acknowledge the financial support of the french ANR
(National Research Agency) for the project “COOK: Réarchitecturisation
des applications industrielles objets” (JC05 42872).

different development roles (i.e., class containers, code own-
ership basic structure, architectural elements...). Packages
provide or require services. They can play core roles or
contain accessory code features. Maintainers of large appli-
cations face the problem of understanding how packages are
structured in general and how packages are in relation with
each others in their provider/consumer roles. This problem
was experienced first-hand by the first author while preparing
the 3.9 release of Squeak, a large open-source Smalltalk [8].
In addition, approaches that support application remodular-
ization [1, 20, 22] succeed in producing alternative views for
system refactorings, but proposed changes remain difficult
to understand and assess. There is a good support for the
algorithmic parts but little support to understand their results.
Hence it is difficult to assess the multiple solutions.

Several previous works provide information on packages
and their relationships, by visualizing software artifacts, met-
rics, their structure or their evolution [6, 7, 10, 19, 23, 28].
However, while these approaches are valuable, they fall short
of providing a fine-grained view of packages that would help
understanding the package shapes (the number of classes it
defines, the inheritance relationships of the internal classes,
how the internal class inherit from external ones...) and help
identifying their roles within an application.

In this paper, we propose Package Surface Blueprint, a
compact visualization revealing package structure and re-
lationships. A package blueprint is structured around the
concept of surface, which represents the relationships be-
tween the observed package and its provider packages. The
Package Surface Blueprint reveals the overall size and in-
ternal complexity of a package, as well as its relation with
other packages, by showing the distribution of references to
classes within and outside the observed package. We applied
the Package Surface Blueprint to several large case studies
namely Squeak the open-source Smalltalk comprising more
than 2000 classes, ArgoUML and Azureus.

Sections 2 & 3 present the challenges in supporting pack-
age understanding, and summarize the properties wanted for
effective visualizations. Section 4 presents the structuring
principles of a package blueprint, which are then declined
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to support a reference view and an inheritance view in Sec-
tion 5. Section 6 then describes some recurring patterns. In
sections 7 & 8, we discuss our visualization and position it
w.r.t. related work before concluding.

2 Challenges in Understanding Packages

Although languages such as Java offer a language mecha-
nism for modelling the dependencies between packages (i.e.,
via the import statement), this mechanism does not really
support all the information that is important to understand
a package. We present a coarse list of useful information
to understand packages. Our goal here is to identify the
challenges that maintainers are facing and not to define a list
of all the problems that a particular solution should tackle.

Size. What is the general size of a package in terms of
classes, inheritance definition, internal and external
class references, imports, exports to other packages?
For example, do we have only a few classes communi-
cating with the rest of the system?

Cohesion and coupling. Transforming an application will
follow natural boundaries defined by coupling and cohe-
sion [5, 2]. Assessing these properties is then important.

Central vs. Peripheral. Two correlated pieces of informa-
tion are important: (1) whether a package belongs to
the core of an application or if it is more peripheral, and
(2) whether a package provides or uses functionality.

Developers vs. Team. Knowing who are the developers
and maintainers of the application and packages helps
in understanding the architecture of the application and
in qualifying package roles [13, 24]. Approaches such
as the distribution map may help in this task [9].

In addition, packages reflect several organizations: they
are units of code deployment, units of code ownership, can
encode team structure, architecture and stratification. Good
packages should be self-contained, or only have a few clear
dependencies to other packages [5, 2, 18]. A package can
interact with other ones in several ways: either as a provider,
or as a consumer or both. In addition a package may have
either a lot of references to other packages or only a couple
of them. If it defines subclasses, those can form either a flat
or deep subclass hierarchy. It can contain subpackages.

Figure 1 shows situations where the same group of classes
can be dispatched. Note that for the purpose of illustration,
Figure 1 only shows references but the same idea holds for
inheritance between classes distributed in several packages.
In both cases (a) and (b), there are only two packages but
in case (a) most of the classes of P4 inherit directly from
a class in P1 while in case (b) all the classes of P4 inherit

internally from B2 which is a root of an inheritance hierar-
chy. Revealing this difference is important since we want to
understand if we can change the relationships between P1
and P4 during a refactoring process. In cases (a) and (c), we
have exactly the same relationships between classes but the
package structure is different. As mentioned by R. Martin
importing a class equals importing the complete package
[21], therefore importing two classes from the same package
is quite different from importing them from two different
packages since in the latter case we import all the classes of
the two packages.

Note that understanding packages is also important in the
context of remodularization approaches [1, 20, 22]. There
it is important to understand how the proposed remodular-
isation compares with the existing code. This problem is
particularly stressed in presence of legacy applications that
consist of thousands of classes and hundreds of packages.

3 Visualization Challenges

We researched the characteristics that an efficient visual-
ization should hold [3, 30, 32]. As our focus is on providing
a first impression of a package and its context, we want to
exploit the gestalt principles of visualization and preattentive
processing1 as much as possible to help spotting important
information [29, 14, 15, 32].

To support the understanding of packages, we want the
visualization to highlight the characteristics of a package in
terms of its internal size, internal and external references.
In particular we want to spot classes or dependencies that
stand out in a given package. We stress that our visualization
should take into account the following properties:

Good mapping to reality. The visualization should offer a
good representation of the situation that the maintainer
can trust and from which it can draw and validate hy-
pothesis.

We want the visualization to highlight the general ten-
dency of a package in terms of its internal size, internal
and external references. In particular we want to spot
classes or dependencies that stand out in a given pack-
age.

Scalability and simple navigation. The maintainer should
easily access the information. The visualization should

1 Researchers in psychology and vision have discovered a number of
visual properties that are preattentively processed. They are detected imme-
diately by the visual system: viewers do not have to focus their attention on
a specific region in an image to determine whether elements with the given
property are present or absent. An example of a preattentive task is detect-
ing a filled circle in a group of empty circles. Commonly used preattentive
features include hue, curvature, size, intensity, orientation, length, motion,
and depth of field. However, combining them can destroy their preattentive
power (in a context of filled squares and empty circles, a filled circle is
usually not detected preattentively). Some of the features are not adapted to
our needs. For example, we do not consider motion as applicable.
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Figure 1. Different package configurations over the same number of classes.

scale i.e., we should be able to have system overview as
well as focusing on a particular package. We want a vi-
sualization that scales well with the number of packages
and of dependencies, so we prefer to avoid depicting
dependencies with graphs. Given that the graph will
contain more than thousands of nodes and much more
edges, this will result a unusable view [16].

Low visual complexity. By being regular and well struc-
tured, i.e., reusing the same conventions of color or
position, the visualization should help the maintainer
to learn it and understand it. In addition, while the visu-
alization should offer a lot of information, it should not
be complex to analyze.

4 Package Surface Blueprints

A package blueprint represents how the package under
analysis references other packages. Figure 2 presents the
key principles of a Package Blueprint. These principles will
be realized slightly differently when showing direct class
references or inheritance relationships.

4.1 Basic Principles

The package blueprint visualization is structured around
the “contact areas” between packages, that we name surfaces.
A surface represents the conceptual interaction between the
observed package and another package. In Figure 2(a) the
package P1 is in relation with three packages P1, P2, and P4,
via different relationships between its own classes and the
classes present in the other packages, so it has three surfaces.

A package blueprint shows the observed package as a rect-
angle which is vertically subdivided by each of the package’s
surfaces. Each subdivision represents a surface between the
observed package and a referenced package, and will be
more or less tall, depending on the strength of the relation
between the two packages. In Figure 2(b), the package
blueprint of P1 is made from three stacked boxes because
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Figure 2. Consider P1 that references four
classes in three other packages (a). A
blueprint shows the surfaces of the observed
package as stacked subdivisions (b). Small
boxes represent classes, either in the ob-
served package (right white part) or in refer-
enced packages (left gray part) (c).

P1 references three other packages. The box of the surface
between P1 and P4 is taller because P1 references more
classes in P4 than in P2 or P3.

In each subdivision, we show the classes involved in the
corresponding surface. By convention, we always show
the classes in the referenced packages in the leftmost gray-
colored column of each surface, and the classes of the ob-
served package on the right. In Figure 2(c), the topmost
surface shows that classes D1 and E1 reference class B4, and
that C1 references A4. If many classes reference the same
external class, we show them all in an horizontal row; we can
thus assess the importance of an external class by looking at
how many classes there is in the row: in Figure 2, the row of
B4 stands out because the two referring classes D1 and E1
make it wider.
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Figure 3. Surface package blueprint detailed
view.

4.2 Detailed Explanation

To convey more information, we add variations to the
basic layout described above, as illustrated in Figure 3.

Internal References. To support the understanding of ref-
erences between classes inside the observed package, we
add a particular surface with a thick border at the top of the
blueprint. We name this surface the head of the blueprint,
and the rest its body. In the head, the first column repre-
sents the internal classes that are referenced from within the
package itself: here A1 and G1 are the classes referenced
respectively by B1 and C1 and H1 and I1. The height of
the head surface indicates the number of classes referenced
within the package.

Position. Internal classes are arranged by columns: each
column (after the leftmost one) refers to the same internal
class for all the surfaces. The width of the surface indicates
the number of referencing classes of the package. Figure 3
shows that class C1 internally references A1, and externally
references A3 and B3.

We order classes in both horizontal and vertical direction
to present important elements according to the (occidental)
reading direction. Horizontally, we sort classes from left to
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Figure 4. Inheritance package surface
blueprint. Orange bordered classes inherit
from external classes directly.

right according to the number of external classes they refer-
ence from the whole package. Hence classes referencing the
most occupy the nearest columns from the gray area.

We apply the same principle for the vertical ordering,
both of surfaces within a blueprint, and of rows (i.e., external
classes) within a surface. Within a package, we position
surfaces that reference the most classes the highest. Within a
surface, we order external classes from the most referenced
at the top, to the least referenced are at the bottom of the
surface. This is why in Figure 3 the surface with P3 is the
highest and why the surface with P2 is above P4, since there
are more classes references from P2 than from P4.

Color. We want to distinguish referenced classes depend-
ing on whether they belong to a framework or the base sys-
tem, or are within the scope of the application under study.
When a referenced class is not part of the application we
are currently analyzing, we color its border in cyan. In ad-
dition the color intensity of a node conveys the number of
references it is doing: the darker the more references. Both
intensity and horizontal position represent the number of
references, but position is computed relative to the whole
package, while intensity is relative to each surface. Thus,
while classes on the left of surfaces will generally tend to
be dark, a class that makes many references in the whole
package but few in a particular surface will stand up in this
surface since it will be light grey.

The Case of Inheritance. Up to now, we only discussed
references, but inheritance is a really important structural
relationship in object-oriented programming. We adapt the
Package Surface Blueprint to offer a view specific to inheri-
tance, as shown in Figure 4. In this variation, we consider
only single inheritance so we don’t need the head surface: we
can display all classes and subclasses transitively inheriting
from external classes on the same row. We distinguish the
direct subclasses of external classes by showing them with
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Figure 5. Analysing the Network-Kernel Pack-
age.

an orange border; indirect subclasses are black-bordered and
arranged in trees under their superclass. In addition, root
classes such as Object are filled in cyan and abstract classes
in blue. In Figure 4, A1 inherits from A2 defined in package
P2, while B1, C1, and D1 inherit from A1.

The fill color of classes in the inheritance view still repre-
sents the number of references, but relative to the package
and not to the surface like in the references views. This
makes it possible to correlate inheritance and references. For
instance, the top-right view in Figure 5 shows that most ref-
erences come from a subclass (�Socket) of Object; in other
cases, references might come from classes that are lower in
the hierarchy as HTMLInput in Figure 6.

4.3 An Example: The Network Subsystem

We are now ready to have a deeper look at an example.
The Squeak Network subsystem contains 178 classes and 26
packages — this package contains on the one hand a library
and a set of applications such as a complete mail reader.
The blueprint on the left in Figure 5 shows the references
package blueprint of the Network-Kernel package in Squeak.

Glancing at it we see that the package blueprint of the
Network-Kernel package has nearly a square top-red surface
indicating that most internal classes are referenced internally.
This conveys a first impression of the package’s cohesion
even if not really precise [5]. Contrast it with the package
blueprint of the Telnet-Wordnet package which clearly shows
little internal references.

We see that Network-Kernel is in relation with thirteen
other packages. Most of the referenced classes are cyan,
which means that they are not part of the network subsystem.
What is striking is that all except one of the referenced
classes are classes outside the application (see (HTTPSocket)
in Figure 5). However, since the package is named kernel,
it is strange that it refers to other classes from the same
application, and especially only one. We see that half of the
referred packages have strong references (indicated by their
dark color).

Using the mouse and pointing at the box shows using a fly-
by-help the class and package names (indicated in italics in
Figure 5). The Tools-Menus surface indicates some improper
layering. Indeed it shows that Network-Kernel is referencing
UI classes via the package Tools-Menus which seems inap-
propriate. We learn that the class making the most internal
references is named OldSocket; this same class also makes
the most external references, to three packages (Collection-
String, Tools-Menus, and Kernel-Chronology). The second
most referencing class is named OldSimpleClientSocket. It is
worth to notice that OldSocket is only referencing itself and
that even OldSimpleClientSocket does not refer to it, so it
could be removed from this package without problems. The
third most referencing class is Socket. Having two classes
named Socket and OldSocket clearly indicates that the pack-
age is in a transition phase where a new implementation
has been supplanting an old one. We learn that the most
internally referenced class is NetNameResolver and the sec-
ond most is Socket. So this is a sign of good design since
important domain classes are well used within the package.

The inheritance package blueprint shows that the
Network-Kernel package is bound to three external packages
containing the three superclasses Object, Error, and Stream.
In addition the package, while inheriting a lot from external
packages, is inheriting from the same class, here Object. The
difference between the two main surfaces is interesting to
discuss: the topmost surface shows that most of the classes
are directly inheriting from one external superclass (here Ob-
ject), while the second one shows that errors are specialized
internally to the package. All in all, this makes sense and
provides a good characterization of the package.

5 Packages Within Their Application

Understanding a package in isolation (mainly as a con-
sumer) is interesting but lacks information about the over-
all context i.e., is a selected class used by other packages?
which packages is a selected surface about? As shown in
the following subsections, our approach also supports the
understanding of the situation of a class/package within the
context of a complete application.
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Figure 6. Inheritance global view in Network

5.1 Inheritance package blueprint Overview

Overviewing all the package blueprints of an application
gives a first impression of how the packages were built and
structured. During our case studies, we identified a few
remarkable usage patterns: a package can mainly contain big
inheritance hierarchies (potentially a single one); classes in a
package may inherit from superclasses within the application
itself or from frameworks or the base system; or a package
can specialize functionality and have few internal inheritance
relationships.

First Case: Squeak’s Network. For example, Figure 6
shows all the package blueprints of the Network subsystem
in Squeak, which groups library and application classes. It
shows that there are only two places where classes inherit
from classes within the Network subsystem scope: HTMLEn-
tity and OldSimpleClientSocket. Note however that OldSim-
pleClientSocket has a lighter shade of gray than HTMLEntity;
this indicates that the former is not referencing other classes
as much as the latter.

Clicking on the HTMLEntity box, we can see that it is
defined in the Network-HTML-Parser package, away of all
its subclasses, and then directly consider that it is defined in
the wrong package. We can immediately spot that some
packages are heavily structured around inheritance, like
the package Network-HTML-Parser Entities or Network-Mail
Reader-Filters which define a single hierarchy.

The overview also shows classes doing a lot of references
(indicated as black boxes) such as HTMLEntity, FileInput
and HTMLInput. However, in the context of inheritance, we
should pay attention to the fact that all the subclasses of a
class inherit its behavior and references. While we can spot
classes doing a lot of references, the view does not convey
the tree ordering so it is difficult to evaluate the subclasses
of a given class. The case of FileInput is interesting: while

Browser

InspectorDictionaryInspector

MessageSet

Figure 7. Inheritance global view in Tools

it is a leaf in the inheritance tree, it makes a lot of direct
references, indicating that the class is complex.

While the views are simple, they convey powerful infor-
mation. If we analyze a bit, we can see that the percentage
of black-bordered boxes reveals the amount of internal reuse.
Orange-bordered classes that inherit from a cyan class in-
dicate reuse of functionality from outside the application.
Note that this is different from many orange-bordered classes
inheriting from a black-bordered one (like with HTMLEntity
in HTML-Parser Entities), since a lot of classes inherit from
Object and indeed do not share the same domain. In contrast,
inheriting from HTMLEntity clearly reuses its domain.

Second Case: Squeak’s Tools. Figure 7 shows the
blueprints of the Tools packages which contain all the Squeak
development tools: code browsers, debuggers... Without go-
ing into details, we immediately see different shapes. Here,
the blueprints are thinner but often higher, showing that there
is less internal reuse than in Network. Note that even if the
Tools packages contain a large set of development tools, in-
heritance is actually used to reuse abstractions: The blueprint
of Tools-Browser shows that the class Browser, even if it de-
fines a tool, is inherited several times. Other tools reuse the
abstraction of Browser: for instance, its subclass Message-
Set allows one to browse a group of methods and is reused
and extended in Tools-Debugger.

The blueprint of Tools-Debugger shows an interesting
shape: it is narrow and has a nearly flat inheritance hierarchy.
Moreover, all its classes are inheriting from classes outside
the package. Note that this behavior makes sense because
the package aggregates functionality defined elsewhere, and
the view easily reveals it. The package Tools-FileList defines
a tool to browse external files and shows a similar shape.
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ServerDirectory

HTTPSocket

Url

Figure 8. In this view, the Network-Kernel
package was selected in red, surfaces with
Collections-Strings annotated in yellow, and
class HTTPSocket selected in blue.

5.2 Interactively Querying the Blueprint

The maintainer can also query the system by clicking
either on a class or on a surface. This highlights in red all
occurences of the class, or all surfaces referring to the same
package. In addition, colors can be assigned to a surface to
help the maintainer identify all the surfaces communicating
with the same packages.

Figure 8 shows the blueprints of all the Network packages
referencing and defining HTTPSocket. It is striking to see
that HTTPSocket is a central class of the package Network-
Protocols as it refers to most of the classes referred by that
package. In addition, the surface referencing the package
Collections-Strings is annotated in yellow and we see how
all the packages refer to this package.

By clicking on the head surface, it gets colored in red and
shows the package usage by coloring the surfaces referencing
it in red. Figure 8 shows how the package Network-Kernel is
used within the application.

uml.cognitive.Critics

Figure 9. A Sumo Blueprint: the Critics pack-
age in ArgoUML.

6 Striking Shapes

While applying blueprints to large applications we iden-
tified some striking shapes that the blueprint, a surface or a
class within a blueprint would produce. We present here the
most frequent ones.

6.1 Shapes of Packages and Surfaces

Sumo Package. A very large and tall reference blueprint
denotes a package that makes a lot of references from many
classes. Figure 9 shows an example: the package Critics of
ArgoUML that defines all the rules for assessing the quality
of models.

Small House Package. A small inheritance blueprint with
only a couple of surfaces and few inheritance hierarchies
often denotes a package that offers a well packaged function-
ality, like Tools-Debugger or Tools-FileList (Figure 7). These
blueprints are usually taller than larger.

Flat Head Package. A reference blueprint with a wide
but flat head indicates limited internal references. Network-
TelNet WordNet and Network-HTML-Parser Entities in Fig-
ure 8 are flat head blueprints.

Exclusive External Referencer Package. When the first
column in a blueprint is almost or completely cyan, the pack-
age makes most or all of its external references to classes
outside the scope of the analyzed application. These pack-
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ages typically extend a framework or a core library; Network-
Kernel in Figure 8 is an example.

Loner Package. A loner is a package that contains only
a couple of classes. It is often containing a single test case
class. The blueprint Network-Kernel-Tests in Figure 8 or
Network-Mail Reader-Categorizer, Network-UUID, Network-
Mail Reader-Spam of Figure 6 are loners. Some of these
packages are clearly good candidates for remodularisation.

Large External Surface. When the topmost external sur-
faces are really large, like the four surfaces below the head
in Figure 9, they identify packages that we must pay atten-
tion to, because changes in these external packages will very
probably impact the package under analysis.

Square Head Package. A package that references all its
own classes will have a blueprint with a square internal
surface; this denotes a package that is quite cohesive. In
Figure 8, Network-Kernel has a square head and appears to
be relatively well packaged.

Tower Package. A reference blueprint with a small head
and a thin body denotes a package with few internal refer-
ences but that makes many external references. This package
may not be cohesive but highly coupled with the external
packages. The package peer in Azureus is an extreme of
this shape, as shown in Figure 10. In Figure 8, Network-
RemoteDirectory has a more cohesive head and three classes
intensively referencing external packages.

6.2 Shapes of Classes

Main Referencer Class. A vertical alignment of dark
squares in the body of a blueprint denotes a class that is
responsible for many references to classes in other pack-
ages. The classes HTTPSocket and ServerDirectory are
the main referencers in packages Network-Protocols and
Network-RemoteDirectory; they are candidates to be central
package classes (Figure 8).

Figure 10. Peer in Azureus:
a Tower Blueprint ui.swt.views.Peer

Main Internal Referencer Class. When vertical align-
ments are limited to the head, they reveal classes doing
many internal and few external references. These classes
often define the abstraction of the application. In Figure 8,
the class Url only references classes within Network-Url.

Omnipresent Referenced Class. Classes of this kind are
referenced by almost all the internal classes, and easily iden-
tifiable by filled rows in a surface. This makes sense for a
facade class if it occurs a few times, but in ArgoUML we
see this shape in most packages for Facade and Model (see
Figure 9); we may thus assess that the Facade pattern is
misused.

7 Evaluation and Discussion

7.1 Evaluation

The Package Surface Blueprint shows the internal num-
ber of classes as well as the number of classes externally
referenced. Hence it conveys whether the package is using a
lot of information or not.

Size. The Package Surface Blueprint shows the complexity
of the observed package in several dimensions. The height
of the body indicates the amount of external classes refer-
enced, whereas the number of surfaces shows the number of
referenced packages. The height of each individual surface
shows how many classes are referenced in the corresponding
package. This gives us an estimate of the coupling between
the package and this surface; to further evaluate the coupling
strength, we should also look at the intensity of referencing
classes in the surface because it represents the number of
references. In addition, the width of the surface indicates the
number of referencing classes.

Those visual properties combine to give a quick impres-
sion not just about the visualized package, but also about
its classes: a thin package with a long body depends on a
lot of classes because of few internal classes. If moreover
the blueprint is heavily lined, i.e., it references a lot of pack-
ages, so some of its referencing classes may be complex and
fragile.

Central or Peripheral. By looking at the border color
of external classes (cyan or black), we can easily see if a
package depends a lot on the framework or on the application.
Also, by using the selection mechanism, we can interactively
see if a package is imported by different subsystems (central)
or just by specific ones (peripheral).

Cohesion and Coupling. The package blueprint also
makes it possible to roughly compare how several packages
are coupled with the observed one: larger surfaces indicate
coupling to more classes and are positioned nearer to the
head surface, while surfaces with more darker class squares
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represent packages which are more coupled in term of sheer
number of references. We can also estimate cohesion by
comparing internal coupling (size and overall intensity of
the head surface) and external coupling.

Co-changes and Impact Analysis. Because the package
blueprint details how packages depend on each other, it
hints at the fragility of the observed package to changes.
Selecting a package or a class highlights surfaces or classes
that reference the selected entity and are thus sensitive to its
changes.

7.2 Discussion

Our approach has worked well on our case studies. It
should be noted that we were not familiar with the case
studies before applying our approach. We have been able to
locate many conceptual bugs; for instance we found some
clearly unwanted dependencies, like the package Network-
Telnet WordNet referencing a class in the user interface
framework. However one of our future works is to evaluate
the view with users. The Package Surface Blueprint answers
the main challenges proposed in Section 2 and in Section 3;
we further intend to address some remaining challenges.

Position Choices. We grouped the internal references at
the top of the package blueprint, then ordered the surfaces
from the ones having the most external references at the
top to the least at the bottom; inside a surface, we also
ordered the rows from the most referencing ones to the least.
This way, we do not force the reader to scroll through big
visualizations, and use the fact that the reader pays more
attention to the top elements than to the bottom ones. We
also tried to layout surfaces compactly so that we can easily
move them.

Seriation. Rows within a surface are sorted according to
the number of references they contain. In an earlier version
we applied the dendrogram seriation algorithm [17] to group
lines having similar referencing classes. However the result-
ing views were not as meaningful as with a simple ordering.
We plan to use seriation to group packages having similar
surfaces i.e., packages using similar packages.

Properties. Instead of the number of references, we could
map different properties to the color of classes and surfaces.
This can create new striking shapes, adapted to a specific
maintenance problem.

Impact of Boundaries. We color classes that do not be-
long to the application in cyan; this is a bit limiting since we
do not distinguish well the true root classes —e.g.,Object or
Model in Squeak— from the classes of a domain library that
the analyzed application would extend. We found it really
effective to color surfaces so that the user can interactively

mark entities on which he wants to focus; this increases the
usability of the tool and speeds up understanding packages.

Shapes. For the time being we represent the classes with
squares only. We could convey more information by using
several visually distinct shapes. But it is not clear which
ones and how efficient the results will be.

Package Nesting. Currently we do not support the nesting
of packages. A solution like the one proposed by Lungu et
al. seems complementary to our approach and interesting
to deal with package nesting [19]. We also consider two
types of relationships between packages (direct reference
and inheritance); therefore we can extend our approach to
other types of relationships like method invocation.

Other Views. So far we only presented blueprints to un-
derstand how a package was referencing or inheriting from
other packages and classes. However we developed the
reverse view: blueprints that present incoming references
made by external classes on the observed package. Due to
space limitation we did not present it. This information is
useful when supporting package splitting or merging.

8 Related Works

Several works provide or visualize information on pack-
ages. Many of these approaches treat software co-change,
looking at coupling from a temporal perspective, whereas in
this paper we focus on the static structure of relationships
[4, 11, 12, 27, 31, 33].

Lungu et al. guide exploration of nested packages based
on patterns in the package nesting and in the dependencies
between packages [19]; their work is integrated in Software-
naut and adapted to system discovery.

Sangal et al. adapt the dependency structure matrix from
the domain of process management to analyze architectural
dependencies in software [26]; while the dependency struc-
ture matrix looks like the package blueprint, it has no visual
semantics. Storey et al. offer multiple top-down views of an
application, but these views do not scale very well with the
number of relationships [28].

Ducasse et al. present Butterfly, a radar-based visualiza-
tion that summarizes incoming and outcoming relationships
for a package [10], but only gives a high-level client/provider
trend. In a similar approach, Pzinger et al. use Kiviat di-
agrams to present the evolution of package metrics [23].
Chuah and Eick use rich glyphs to characterize software arte-
facts and their evolution (number of bugs, number of deleted
lines, kind of language...) [6]. In particular, the timewheel
exploits preattentive processing, and the infobug presents
many different data sources in a compact way. D’Ambros
et al. propose an evolution radar to understand the package
coupling based on their evolution [7]. The radar view is
effective at identifying outliers but does not detail structure.
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Those approaches, while valuable, fall short of providing
a fine-grained view of packages that would help understand-
ing the package shapes (the number of classes it defines,
the inheritance relationships of the internal classes, how the
internal classes inherit from external ones,...) and support
the identification of their roles within an application.

9 Conclusion

In this paper, we tackled the problem of understanding
the details of package relationships. We described the Pack-
age Surface Blueprint, a visual approach for understanding
package relationships. While designing Package Surface
Blueprint, we tried to exploit gestalt visualization principles
and preattentive processing.

We successfully applied the visualization to several large
applications and we have been able to point out badly de-
signed packages. To help users interpret views, we have
identified a list of recurrent striking blueprint shapes. We
also introduced interactivity to help the user focus and navi-
gate within the system. We were however rather knowledge-
able about both the visualization and the studied systems; in
future work, we will validate the package blueprint usabil-
ity by conducting tests with several independant software
maintainers.
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