
Designing a simple network

simulator

This document will show how we develop a simulator for a computer net-
work, from scratch, and step by step. The program we are going to develop
is a simple representation of a computer network: it consists of objects that
represent different parts of a local network such as packets, nodes, worksta-
tions, routers and hubs.

At first, we will just simulate the different steps of packet delivery and have
fun with the system. In a second step we will extend the basic functionali-
ties by adding extensions such as a hub and different packet routing strate-
gies. Doing so, we will revisit many object-oriented concepts such as poly-
morphism, encapsulation, hooks and templates. Finally this system could be
refined to become an experiment platform to explore and understand dis-
tributed algorithms.

1 Basic definitions and a starting point

We need to establish the basic model; what does the description above tell
us? A network is a number of interconnected nodes, which exchange data
packets. We will therefore probably need to model the nodes, the connection
links, and the packets:

• Nodes have addresses, can send and receive packets;

• Links connect two nodes together, and transmit packets between them;

• Packets transport a payload and have the address of the node to which
it should be delivered; if we want nodes to be able to answer, packets
should also have the address of the node which originally sent it.

Let’s start exploring by sketching some simple tests; this requires defining a
test class:

TestCase subclass: #KANetworkEntitiesTest
instanceVariableNames: ''
classVariableNames: ''
category: 'NetworkSimulator-Tests'

1

Since we will create several classes, we used the following notation to re-
fer to the classes in which a method should be defined. KANetworkEntiti-
esTest >> testPacketCreationmeans that the method testPacketCre-
ation is defined in the class KANetworkEntitiesTest.

Packets are simple value objects

Packets are the simplest objects in our model: we need to create them, and
ask them about the data they contain, but that’s about it. Once created, a
packet will not change its data, and the packet itself has no knowledge of the
network, and no behavior that we can really talk about.

KANetworkEntitiesTest >> testPacketCreation
| src dest payload packet |
src := Object new.
dest := Object new.
payload := Object new.

packet := KANetworkPacket from: src to: dest payload: payload.

self assert: packet sourceAddress equals: src.
self assert: packet destinationAddress equals: dest.
self assert: packet payload equals: payload

In this unit test, we wrote how we think packets should be created, using a
from:to:payload: constructor message, and how it should be accessed,
using three messages sourceAddress, destinationAddress, and payload.
Since we have not yet decided what addresses and payloads should look like,
we just pass arbitrary objects as parameters; all that matters is that when we
ask the packet, it returns the correct object back.

Of course, if we now compile and run this test method, it will fail, because
the class KANetworkPacket has not been created yet, nor any of the four
above messages. You can either execute and let the system prompt you when
needed or we can define the class:

Object subclass: #KANetworkPacket
instanceVariableNames: 'sourceAddress destinationAddress payload'
classVariableNames: ''
category: 'NetworkSimulator-Core'

The class-side constructor method creates an instance then sends it an ini-
tialization message:

KANetworkPacket class >> from: sourceAddress to: destinationAddress
payload: anObject
^ self new

initializeSource: sourceAddress
destination: destinationAddress
payload: anObject

2

The initialization method is only supposed to be called when creating pack-
ets.

KANetworkPacket >> initializeSource: source destination:
destination payload: anObject
sourceAddress := source.
destinationAddress := destination.
payload := anObject

Once a packet is created, all we need to do with it is to obtain its payload, or
the addresses of its source or destination nodes. We thus define an accessor
method for each instance variable.

KANetworkPacket >> sourceAddress
^ sourceAddress

KANetworkPacket >> destinationAddress
^ destinationAddress

KANetworkPacket >> payload
^ payload

Now our test should be running and passing. That’s enough for our admit-
tedly simplistic model of packets; we completely ignore the layers of the OSI
model, but it could be an interesting exercise to model that more precisely.

Nodes

The first obvious thing we can say about a network node is that if we want
to be able to send packets to it, then it should have an address; let’s translate
that into a test:

KANetworkEntitiesTest >> testNodeCreation
| address node |
address := Object new.
node := KANetworkNode withAddress: address.

self assert: node address equals: address

Like before, before running this test, we have to define the KANetworkNode
class:

Object subclass: #KANetworkNode
instanceVariableNames: 'address'
classVariableNames: ''
category: 'NetworkSimulator-Core'

Then a class-side constructor method taking the address of the new node as
parameter:

KANetworkNode class >> withAddress: aNetworkAddress
^ self new

initializeAddress: aNetworkAddress;

3

yourself

The constructor relies on an instance-side initialization method:

KANetworkNode >> initializeAddress: aNetworkAddress
address := aNetworkAddress

And we can ask a node for its address:

KANetworkNode >> address
^ address

Again our simplistic tests should now pass.

Links are one-way connections between nodes

After nodes and packets, we should look at links. In the real world, a network
cable is usually bidirectional, but here we’re going to keep it simple and de-
fine links as simple one-way connections. To make a two-way connection, we
will just make two links, one in each direction.

Therefore, a link has a source and a destination node; additionally, to be able
to send packets, nodes need to know about their outgoing links.

KANetworkEntitiesTest >> testNodeLinking
| node1 node2 link |
node1 := KANetworkNode withAddress: #address1.
node2 := KANetworkNode withAddress: #address2.
link := KANetworkLink from: node1 to: node2.

link attach.

self assert: (node1 hasLinkTo: node2)

This test creates two nodes and a link; after telling the link to attach itself, we
check that it did so: the source node should confirm that it has an outgoing
link to the destination node. Note that the constructor could have registered
the link with node1, but we opted for a separate message attach instead,
because it’s bad form to have a constructor change other objets; this way we
can build links between arbitrary nodes and still have control of when the
connection really becomes part of the network model.

Again, we need to define class of links:

Object subclass: #KANetworkLink
instanceVariableNames: 'source destination'
classVariableNames: ''
category: 'NetworkSimulator-Core'

A constructor that passes the two required parameters to an instance-side
initialization message:

4

KANetworkLink class >> from: sourceNode to: destinationNode
^ self new

initializeFrom: sourceNode to: destinationNode

The initialization method itself:

KANetworkLink >> initializeFrom: sourceNode to: destinationNode
source := sourceNode.
destination := destinationNode.

Accessors:

KANetworkLink >> source
^ source

KANetworkLink >> destination
^ destination

The attachmethod of a link delegates to the source node (the link knows
which node has to do something, and the node knows what to do precisely):

KANetworkLink >> attach
source attach: self

If each node knows about all its outgoing links, it means it has a collection of
those; we therefore need to extend KANetworkNode, first with an additional
instance variable outgoingLinks:

Object subclass: #KANetworkNode
instanceVariableNames: 'address outgoingLinks'
classVariableNames: ''
category: 'NetworkSimulator-Core'

This variable needs to be initialized properly:

KANetworkNode >> initialize
outgoingLinks := Set new.

We can then implement the attach: method:

KANetworkNode >> attach: anOutgoingLink
outgoingLinks add: anOutgoingLink

And finally the testing method on instances of KANetworkNode:

KANetworkNode >> hasLinkTo: aNetworkNode
^ outgoingLinks

anySatisfy: [:any | any destination == aNetworkNode]

Again, all the tests should now pass.

Nodes can emit packets

The next big feature is that nodes should be able to send and receive packets,
and links to transmit them.

5

KANetworkEntitiesTest >> testSendAndTransmit
| srcNode destNode link packet |
srcNode := KANetworkNode withAddress: #src.
destNode := KANetworkNode withAddress: #dest.
link := (KANetworkLink from: srcNode to: destNode) attach;
yourself.
packet := KANetworkPacket from: #address to: #dest payload:
#payload.

srcNode send: packet via: link.
self assert: (link isTransmitting: packet).
self deny: (destNode hasReceived: packet).

link transmit: packet.
self deny: (link isTransmitting: packet).
self assert: (destNode hasReceived: packet)

We create and setup two nodes, a link between them, and a packet. Now, to
control which packets get delivered in which order, we specify that it hap-
pens in separate, controlled steps. This will allow us to model packet delivery
precisely, to simulate latency, out-of-order reception, etc.:

• First, we tell the node to send the packet using send:via:. At that
point the packet should be passed to the link for transmission, but not
completely delivered yet.

• Then, we tell the link to actually pass the packet along using trans-
mit:, and thus the packet should be received by the destination node.

Sending

To send a packet, the node emits it on the link:

KANetworkNode >> send: aPacket via: aLink
aLink emit: aPacket

Since the packet will not be delivered right away, emitting a packet really
just stores it in the link, until the user elects this packet to proceed using the
transmit: message. Storing packets requires adding an instance variable to
KANetworkLink, as well as specifying how this instance variable should be
initialized.

Object subclass: #KANetworkLink
instanceVariableNames: 'source destination packetsToTransmit'
classVariableNames: ''
category: 'NetworkSimulator-Core'

KANetworkLink >> initialize
packetsToTransmit := OrderedCollection new

KANetworkLink >> emit: aPacket
"Packets are not transmitted right away, but stored.

6

Transmission is explicitly triggered later, by sending
#transmit:."
packetsToTransmit add: aPacket

We also add a testing method to check whether a given packet is currently
being transmitted by a link:

KANetworkLink >> isTransmitting: aPacket
^ packetsToTransmit includes: aPacket

Transmitting

Transmitting a packet means passing it to the destination node, which will
receive it. A link can not transmit packets that have not been sent via it, and
once transmitted, the packet leaves the link:

KANetworkLink >> transmit: aPacket
"Transmit aPacket to the destination node of the receiver link."
(self isTransmitting: aPacket)

ifTrue: [
packetsToTransmit remove: aPacket.
destination receive: aPacket from: self]

Nodes only consume packets addressed to them; this is what will happen in
our test, so we can worry about the alternative case later (notYetImplemented
is a special message that we can use in place of code that we will have to
write eventually, but prefer to ignore for the time being).

KANetworkNode >> receive: aPacket from: aLink
aPacket destinationAddress = address

ifTrue: [
self consume: aPacket.
arrivedPackets add: aPacket]

ifFalse: [self notYetImplemented]

Consuming a packet represents what the node will do with it at the applica-
tion level; for the moment, let’s just define an empty consume: method, as a
template for later:

KANetworkNode >> consume: aPacket
"Default handling is to do nothing."

Additionally to consuming the packet, we remember it did arrive; for now
this is mostly for our tests and for debug, but we could see that becoming
useful in the future, if we want to simulate packet losses and re-emissions.
We thus add the arrivedPackets instance variable, with proper initializa-
tion and accessing:

Object subclass: #KANetworkNode
instanceVariableNames: 'address outgoingLinks arrivedPackets'
classVariableNames: ''

7

category: 'NetworkSimulator-Core'

KANetworkNode >> initialize
outgoingLinks := Set new.
arrivedPackets := OrderedCollection new

KANetworkNode >> hasReceived: aPacket
^ arrivedPackets includes: aPacket

At that point all our tests should pass. Note that the message notYetImple-
mented is not called, since our tests do not require routing (yet).

A standalone node can transmit a packet to itself

If a node wants to send a packet to itself, it does not need any connection
to do so. In real-world networking stacks, loopback routing shortcuts the
lower networking layers; however, this is finer detail than we are modeling
here. Still, we want to model the fact that the loopback link is a little special,
so each node will store its own loopback link, separately from the outgoing
links.

KANetworkEntitiesTest >> testLoopback
| node packet |
node := KANetworkNode withAddress: #address.
packet := KANetworkPacket from: #address to: #address payload:
#payload.

node send: packet.
node loopback transmit: packet.

self assert: (node hasReceived: packet).
self deny: (node loopback isTransmitting: packet)

The loopback link is implicitely created as part of the node itself. We also
introduce a new send: message, which takes the responsibility of selecting
the link to emit the packet. For triggering packet transmission, we have to
use a specific accessor to find the loopback link of the node.

First, we have to add yet another instance variable in nodes:

Object subclass: #KANetworkNode
instanceVariableNames: 'address outgoingLinks loopback
arrivedPackets'
classVariableNames: ''
category: 'NetworkSimulator-Core'

As with all instance variables, we have to remember to make sure it is cor-
rectly initialized; we thus modify initialize:

KANetworkNode >> initialize
loopback := KANetworkLink from: self to: self.
outgoingLinks := Set new.

8

arrivedPackets := OrderedCollection new

The accessor has nothing special:

KANetworkNode >> loopback
^ loopback

And finally we can focus on the send: method and automatic link selection.
This method has to rely on some routing algorithm to identify which links
will transmit the packet closer to its destination. Since some routing algo-
rithms select more than one link, we will implement routing as an iteration
method, which evaluates the given block for each selected link.

KANetworkNode >> send: aPacket
"Send aPacket, leaving the responsibility of routing to the
node."
self

linksTowards: aPacket destinationAddress
do: [:link | self send: aPacket via: link]

One of the simplest routing algorithm is flooding: just send the packet via
every link; this is obviously a waste of bandwidth, but it works. We can how-
ever make a special case for loopback, when the destination address is the
one of the current node. When the address of a packet is the address

KANetworkNode >> linksTowards: anAddress do: aBlock
"Simple flood algorithm: route via all outgoing links.
However, just loopback if the receiver node is the routing
destination."
anAddress = address

ifTrue: [aBlock value: self loopback]
ifFalse: [outgoingLinks do: aBlock]

Now we have the basic model working, and we can try more realistic exam-
ples.

2 Modeling the network itself

More realistic tests will require non-trivial networks. We thus need an ob-
ject that represents the network as a whole, to avoid keeping many nodes
and links in individual variables. We will introduce a new class KANetwork,
whose responsibility is to help us build, assemble then find the nodes and
links involved in a network.

Let’s start by creating another test class, to keep things in order:

TestCase subclass: #KANetworkTest
instanceVariableNames: 'net hub alone'
classVariableNames: ''
category: 'NetworkSimulator-Tests'

9

Since every test needs to rebuild the whole network from scratch, we specify
so in the setUpmethod:

KANetworkTest >> setUp
self buildNetwork

Before anything else, let’s write a tests that will pass once we’ve made progress;
we want to access network nodes given only their addresses. Here we check
that we get a hub node based on its address:

KANetworkTest >> testNetworkFindsNodesByAddress
self

assert: (net nodeAt: hub address ifNone: [self fail])
equals: hub

We will have to implement this nodeAt:ifNone: on our KANetwork class;
but first we need to decide how its instances are built. Let’s build network
net, with the main part connected in a star shape around a hub node; a pair
of nodes ping and pong are part of the network but not connected to hub,
and the alone node is just by itself, not even added to the network:

mac

pc 1

hub

pc 2

impr

alone

ping

pong

KANetworkTest >> buildNetwork
alone := KANetworkNode withAddress: #alone.

net := KANetwork new.

hub := KANetworkNode withAddress: #hub.
#(mac pc1 pc2 prn) do: [:addr |

| node |
node := KANetworkNode withAddress: addr.
net connect: node to: hub].

net
connect: (KANetworkNode withAddress: #ping)
to: (KANetworkNode withAddress: #pong)

10

The network class

This method builds nodes as before, but sends connect:to: to the net ob-
ject instead of creating links explicitly; this is how we tell the network which
nodes and links it should remember.

Object subclass: #KANetwork
instanceVariableNames: 'nodes links'
classVariableNames: ''
category: 'NetworkSimulator-Core'

Let’s not forget about proper initialization:

KANetwork >> initialize
nodes := Set new.
links := Set new

Connecting nodes means creating the links in both directions, then adding
both nodes and both links in their corresponding collections:

KANetwork >> connect: aNode to: anotherNode
self add: aNode.
self add: anotherNode.
links add: (self makeLinkFrom: aNode to: anotherNode) attach.
links add: (self makeLinkFrom: anotherNode to: aNode) attach

Note that the attachmethod we defined previously effectively returns the
link.

KANetwork >> add: aNode
nodes add: aNode

KANetwork >> makeLinkFrom: aNode to: anotherNode
^ KANetworkLink from: aNode to: anotherNode

Looking up nodes

Now we can implement node lookup:

KANetwork >> nodeAt: anAddress ifNone: noneBlock
^ nodes

detect: [:any | any address = anAddress]
ifNone: noneBlock

We can also make a convenience nodeAt: method for node lookup, that will
raise an exception if it does not find the node. Let’s first write a test which
validates this behavior:

KANetworkTest >> testNetworkOnlyFindsAddedNodes
self

should: [net nodeAt: alone address]
raise: NotFound

11

Then we can simply express the nodeAt: using the predefined Pharo excep-
tion NotFound:

KANetwork >> nodeAt: anAddress
^ self

nodeAt: anAddress
ifNone: [NotFound signalFor: anAddress in: self]

Looking up links

And finally, we want to be able to lookup links between two nodes. Again we
define a new test:

KANetworkTest >> testNetworkFindsLinks
| link |
self

shouldnt: [link := net linkFrom: #pong to: #ping]
raise: NotFound.

self
assert: link source
equals: (net nodeAt: #pong).

self
assert: link destination
equals: (net nodeAt: #ping)

And we define the method linkFrom:to: identifying a link between source
and destination nodes with matching addresses:

KANetwork >> linkFrom: sourceAddress to: destinationAddress
^ links

detect: [:anyLink |
anyLink source address = sourceAddress

and: [anyLink destination address =
destinationAddress]]

ifNone: [
NotFound

signalFor: sourceAddress -> destinationAddress
in: self]

As a final check, let’s reproduce some of our previous tests in the network we
just built.

KANetworkTest >> testSelfSend
| packet |
packet := KANetworkPacket

from: alone address
to: alone address
payload: #something.

self assert: (packet isAddressedTo: alone).
self assert: (packet isOriginatingFrom: alone).

12

alone send: packet.
self deny: (alone hasReceived: packet).
self assert: (alone loopback isTransmitting: packet).

alone loopback transmit: packet.
self deny: (alone loopback isTransmitting: packet).
self assert: (alone hasReceived: packet)

You can see that we used new testing methods isAddressedTo: and isO-
riginatingFrom:; these are just to avoid explicitly comparing addresses, for
convenience:

KANetworkPacket >> isAddressedTo: aNode
^ destinationAddress = aNode address

KANetworkPacket >> isOriginatingFrom: aNode
^ sourceAddress = aNode address

The second test is transmitting a packet between directly connected nodes:

KANetworkTest >> testDirectSend
| packet ping pong link |
packet := KANetworkPacket from: #ping to: #pong payload: #ball.
ping := net nodeAt: #ping.
pong := net nodeAt: #pong.
link := net linkFrom: #ping to: #pong.

ping send: packet.
self assert: (link isTransmitting: packet).
self deny: (pong hasReceived: packet).

link transmit: packet.
self deny: (link isTransmitting: packet).
self assert: (pong hasReceived: packet)

Both those tests should pass with no additional work, since they just repro-
duce what we already tested in KANetworkEntitiesTest.

3 Packet delivery in a more realistic network

Until now, we only tested packet delivery between directly connected nodes;
let’s try sending a node so that the packet has to be forwarded through the
hub.

KANetworkTest >> testSendViaHub
| hello mac pc1 firstLink secondLink |
hello := KANetworkPacket from: #mac to: #pc1 payload: 'Hello!'.
mac := net nodeAt: #mac.
pc1 := net nodeAt: #pc1.
firstLink := net linkFrom: #mac to: #hub.
secondLink := net linkFrom: #hub to: #pc1.

13

self assert: (hello isAddressedTo: pc1).
self assert: (hello isOriginatingFrom: mac).

mac send: hello.
self deny: (pc1 hasReceived: hello).
self assert: (firstLink isTransmitting: hello).

firstLink transmit: hello.
self deny: (pc1 hasReceived: hello).
self assert: (secondLink isTransmitting: hello).

secondLink transmit: hello.
self assert: (pc1 hasReceived: hello).

If you run this test, you will see that it fails because of the notYetImple-
mentedmessage we left earlier; it’s time to fix that! When a node receives a
packet but is not the recipient, it should forward the packet:

KANetworkNode >> receive: aPacket from: aLink
aPacket destinationAddress = address

ifTrue: [
self consume: aPacket.
arrivedPackets add: aPacket]

ifFalse: [self forward: aPacket from: aLink]

Now we need to implement packet forwarding, but there is a trap. An easy
solution would be to simply send: the packet again: the hub would send the
packet to all its connected nodes, one of which happens to be pc1, the recipi-
ent, so all is good!

Wrong.

The packet would be sent back to other nodes than the recipient; what would
those nodes do when they receive a packet not addressed to them? Forward
it. Where? To all their neighbours, which would forward it again... so when
would the forwarding stop?

Differenciating hubs from normal nodes

To fix this, we need hubs to behave differently from nodes. When receiving
a packet addressed to another node, a hub should forward it, but a normal
node should just ignore it.

Let’s first define an empty forward:from: method for nodes:

KANetworkNode >> forward: aPacket from: arrivalLink
"Do nothing. Normal nodes do not route packets."

Now we can add a new class for hubs, which will have an actual implementa-
tion of forwarding:

14

KANetworkNode subclass: #KANetworkHub
instanceVariableNames: ''
classVariableNames: ''
category: 'NetworkSimulator-Nodes'

A hub does not have routing information, so all we can do is forward the
packet on all outbound links, unless the link goes back where the packet ar-
rived from:

KANetworkHub >> forward: aPacket from: arrivalLink
self

linksTowards: aPacket destinationAddress
do: [:link |

link destination == arrivalLink source
ifFalse: [self send: aPacket via: link]]

Now we can use a proper hub in our test, replacing the relevant line in KANet-
workTest >> buildNetwork:, and check that the testSendViaHub unit test
passes.

hub := KANetworkHub withAddress: #hub.

Other examples of specialized nodes

To do this is out of place, it’s not about packet delivery…

Workstations count received packets

When a workstation consumes a packet, it simply increments a packet counter.

Let’s start by subclassing KANetworkNode:

KANetworkNode subclass: #KANetworkWorkstation
instanceVariableNames: 'receivedCount'
classVariableNames: ''
category: 'NetworkSimulator-Nodes'

We need to initialize the receivedCount instance variable. Properly redefin-
ing initialize: is enough, because the address is initialized separately in
the constructor method KANetworkNode >> withAddress:; however, it’s
really important not to forget the super initializemessage, because that
method does

KANetworkWorkstation >> initialize
super initialize.
receivedCount := 0

Now we can redefine consume: accordingly:

KANetworkWorkstation >> consume: aPacket
receivedCount := receivedCount + 1

15

To do Define accessors and the printOn: method, for debugging. Test
the behavior of workstation nodes.

Printers accumulate printouts

When a printer consumes a packet, it prints it; we can model the output tray
as a list where packet payloads get queued, and the supply tray as the num-
ber of blank sheets it contains.

The implementation is very similar; we subclass KANetworkNode to redefine
the consume: method:

KANetworkNode subclass: #KANetworkPrinter
instanceVariableNames: 'supply tray'
classVariableNames: ''
category: 'NetworkSimulator-Nodes'

KANetworkPrinter >> consume: aPacket
supply > 0 ifTrue: [^ self "no paper, do nothing"].

supply := supply - 1.
tray add: aPacket payload

Initialization is a bit different, though; since the standard initializemethod
has no argument, the only sensible initial value for the supply instance vari-
able is zero:

KANetworkPrinter >> initialize
super initialize.
supply := 0.
tray := OrderedCollection new

We therefore need a way to pass the initial supply of paper available to a
fresh instance:

KANetworkPrinter >> resupply: paperSheets
supply := supply + paperSheets

For convenience, we can provide an extended constructor to create printers
with a non-empty supply in one message:

KANetworkPrinter class >> withAddress: anAddress initialSupply:
paperSheets
^ (self withAddress: anAddress)

resupply: paperSheets;
yourself

To do Define accessors and the printOn: method, for debugging. Test
the behavior of printer nodes.

16

Servers answer requests

When a server node consumes a packet, it converts the payload to uppercase,
then sends that back to the sender of the request.

This is yet another subclass which redefines the consume: method, but this
time the node is stateless, so we have no initialization or accessor methods to
write:

KANetworkNode subclass: #KANetworkServer
instanceVariableNames: ''
classVariableNames: ''
category: 'NetworkSimulator-Nodes'

KANetworkServer >> consume: aPacket
| response |
response := aPacket payload asUppercase.
self send: (KANetworkPacket

from: self address
to: aPacket sourceAddress
payload: response)

To do Define accessors and the printOn: method, for debugging. Test
the behavior of server nodes.

4 Cycles and routing tables

Let’s now model a more realistic network with a cycle between three central
nodes:

a1

A C

B

a2

c1b1

b2 b3

Since we want to keep the previous tests unchanged, we define a new test
class with a different buildNetworkmethod:

TestCase subclass: #KARoutingNetworkTest
instanceVariableNames: 'net'
classVariableNames: ''
category: 'Kata-NetworkSimulator-Tests'

17

KARoutingNetworkTest >> setUp
self buildNetwork

KARoutingNetworkTest >> buildNetwork
| routers |
net := KANetwork new.

routers := #(A B C) collect: [:each | KANetworkHub withAddress:
each].
net connect: routers first to: routers second.
net connect: routers second to: routers third.
net connect: routers third to: routers first.

#(a1 a2) do: [:addr |
net connect: routers first to: (KANetworkNode withAddress:

addr)].
#(b1 b2 b3) do: [:addr |

net connect: routers second to: (KANetworkNode withAddress:
addr)].
net connect: routers third to: (KANetworkNode withAddress: #c1)

To do automatic routing?

18

