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a b s t r a c t

Context: Object-oriented languages such as Java, Smalltalk, and C++ structure their programs using pack-
ages. Maintainers of large systems need to understand how packages relate to each other, but this task is
complex because packages often have multiple clients and play different roles (class container, code own-
ership, etc.). Several approaches have been proposed, among which the use of cohesion and coupling met-
rics. Such metrics help identify candidate packages for restructuring; however, they do not help
maintainers actually understand the structure and interrelationships between packages.
Objectives: In this paper, we use pre-attentive processing as the basis for package visualization and see to
what extent it could be used in package understanding.
Method: We present the Package Fingerprint, a 2D visualization of the references made to and from a
package. The proposed visualization offers a semantically rich, but compact and zoomable views centered
on packages. We focus on two views (incoming and outgoing references) that help users understand how
the package under analysis is used by the system and how it uses the system.
Results: We applied these views on four large systems: Squeak, JBoss, Azureus, and ArgoUML. We
obtained several interesting results, among which, the identification of a set of recurring visual patterns
that help maintainers: (a) more easily identify the role of and the way a package is used within the sys-
tem (e.g., the package under analysis provides a set of layered services), and (b) detect either problematic
situations (e.g., a single package that groups together a large number of basic services) or opportunities
for better package restructuring (e.g., removing cyclic dependencies among packages). The visualization
generally scaled well and the detection of different patterns was always possible.
Conclusion: The proposed visualizations and patterns proved to be useful in understanding and maintain-
ing the different systems we addressed. To generalize to other contexts and systems, a real user study is
required.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

To cope with the complexity of large object-oriented software,
developers organize classes into packages or modules. This organi-
zation usually follows conceptual interrelationships between clas-
ses, that the stake-holders would like to maintain over ineluctable
system evolution. As the system modular structure changes, its
maintenance is required. However, where approaches of system
remodularization succeed in proposing system refactorings
[49,6,33,32,5], they do not provide good ways for understanding
and assessing the changes they propose. There is a wide range of
work to define new modularization algorithms but little support
to understand the proposed results and their impact on existing
systems.

It is important to understand the concrete organization of pack-
ages and their interrelationships. Ideally, packages should be kept
as less coupled and as much cohesive as possible [9,3]. We distin-
guish two main approaches of package cohesion in the existing lit-
erature [39,34,5,38]. The first approach defines the cohesion of a
package in terms of the interconnections between its internal clas-
ses. The second approach defines cohesion according to how the
system uses the package classes. For instance, if two classes of a
package are used from the same client package, then they are con-
sidered as conceptually related, regardless of the explicit relation-
ships that exist between them [38]. This second approach is more
meaningful to us, because we consider a package as a functionality
provider and not only a structural grouping of coupled classes.
Many metrics of package cohesion have been defined [9,3,34,5,38]
and help maintainers determine packages that are candidates for
restructuring. However, those approaches do not help maintainers
of large systems when they face the problem of understanding how
packages are structured in general and how packages are in relation
with each other in their provider/client roles.
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Severalpreviousworksonsoftwarevisualizationprovideinforma-
tion on packages and their relationships, by visualizing software
artifacts or metrics about their structure or evolution
[17,15,16,27,37,41,44,22].Whiletheseapproachesarevaluable, they
fallshortofprovidingafine-grainedviewofpackagesthatwouldhelp
maintainersunderstandthestructureofpackages,theirinterrelation-
shipswithinthesystem,andidentifytheirroleswithinasystem.

In this article, we present the Package Fingerprint, a compact,
rich and zoomable visualization to better support the understand-
ing of a package and its relationships. The goal of this visualization
is to help maintainers during their early contacts with unknown
packages. We propose two complementary variants of the Package
Fingerprint, structured around the distribution of references from
or to the classes of the analyzed package: the incoming fingerprint
shows how the system uses the package classes, and highlights
the cohesion of the analyzed package, as defined in [38]; the outgo-
ing fingerprint shows how the package classes use the system.

This article is an extension of previous work [1]. The new con-
tributions presented here are: (1) the description of the outgoing
fingerprints and their use, (2) the application of fingerprints to
large industrial systems, and (3) additional fingerprint patterns.

In Section 2, we discuss the challenges for understanding pack-
ages. Then we present the principles of the incoming and the out-
going fingerprints in Section 3. In Section 4 we show how to use
the incoming fingerprint for analyzing and understanding pack-
ages in practice. Section 5 presents the different zoom levels of a
fingerprint and shows how to read a fingerprint from far away. Sec-
tion 6 presents the outgoing fingerprint via a simple example, and
Section 7 lists the relevant visual patterns in fingerprints. Finally,
we discuss our approach and related works in Sections 8 and 9.

2. Challenges in understanding packages

Parnas introduced information-hiding as a criterion of the
decomposition of systems into modules [35]. The idea is to im-
prove the quality of software, e.g., adaptability and changeability,
by decoupling design elements that are likely to change so that
they can be changed independently. This idea has been largely
adopted in object-oriented design and in software architecture
[40]. Object-oriented languages, such as Java and C++, provide
the notion of packages, or namespaces, to support the decomposi-
tion of systems into subsystems [29,30].

Packages, however, are not mere class containers: they are com-
plex entities that have different usage patterns, often depending on
the clients that use them. Packages often represent code owner-
ship, feature containment, team organization or deployment enti-
ties. Packages play different roles, some central to the system,
others peripheral: Some packages act as reference hubs, others as
authorities.

These multiple facets of packages do not ease the understanding
of inter-package relationships nor even quick identification of a
package clients or providers [17]. Although languages such as Java
make dependencies between packages explicit (i.e., via the import
statement), developers lack tool support to really understand pack-
ages within their context.

To understand the structure and the roles of packages within a
system, we need both raw size information (the size of elements
and their relationships), and coupling and cohesion related infor-
mation. In this section, we summarize the information that a solu-
tion supporting package understanding should provide.

2.1. Raw size information

To understand the packages of a system and their relevance in
the general picture, gathering quantitative information is a good

way to offer a mental picture to the [36,25]. Here is a list of rele-
vant questions:

� How many classes are packaged within a given package?
� How many classes are visible to the rest of the system or com-

municate with it?
� How many packages depend upon a given package?
� How many packages does a given package depend upon?
� What is the ratio of internal/external class references and inher-

itance definitions?

2.2. Cohesion and coupling

Robert Martin discussed principles of architecture and package
design, addressing package cohesion and package coupling [30].
The package cohesion principles are:

Release Reuse Equivalency (REP): Since packages are the unit
of release, they are also the unit of reuse. Therefore a good pack-
age should only contain a group of classes that are reusable
together.
Common Closure (CCP): To minimize the number of packages
that are changed in any given release cycle, it is better to group
classes that change together into the same package.
Common Reuse (CRP): Since a dependency upon a package is a
dependency upon everything within the package, classes that
are reused together should be grouped together. This way, in
any given release, changing any class within a considered pack-
age will have the same impact-propagation if maintainers
change another class within the same package. Thus the
impact-propagation of the package changes is always con-
strained to one graph.

Coupling is always used with cohesion to determine package
quality and it is generally defined as: if changing one package in a
program requires changing another package, then coupling between
these two packages exists [7,21]. Robert Martin defines two types
of coupling: Efferent Coupling and Afferent Coupling [30] taking into
account the sense of the reference (namely incoming and outgoing).

Cohesion and coupling metrics are among the most used met-
rics during perfective maintenance, because they help identify
which packages should be restructured [34,5,39,8,3,28]. In general,
good packages should group classes that are needed for the same
task [38], and they should have a few clear dependencies to other
packages: they should be highly cohesive and lightly coupled.
However, cohesion and coupling alone do not help maintainers
understand the structure, roles, or relationships of packages. In
particular, they do not indicate whether, why and how a package
respects Martin’s cohesion principles, nor do they help decide what
to do if such principles are not respected.

For this, maintainers need more detailed information. For
example, it is important to know if some classes in a package are
always used together or not, and conversely the proportion of pack-
age classes that uses the same set of classes/packages. Knowing
about the usage relations between a package and its clients and
providers offers another perspective on package cohesion, since
that gives the maintainer information on the package role and
cohesion according to Common Reuse Principle [38].

2.3. Package maintenance scenarios

There are a couple of package centric maintenance scenarios
that a good visualization should support. We give here a first open
list based on our experience as maintainers of some large software
systems such as Squeak [13]. These scenarios set the context we
use to detail how we applied fingerprints to real software systems

H. Abdeen et al. / Information and Software Technology 52 (2010) 1312–1330 1313



Author's personal copy

(Sections 4–7). In particular, we show that fingerprints offer fine
information on package use. We limit ourselves to package main-
tenance actions since this is the focus of fingerprints.

Basic understanding. When working on a package, we want to
get an idea of the importance of the package in terms of its size,
but also in terms of its actual place and its role within the sys-
tem. A package that is mainly using other packages will cer-
tainly be easier to change than a central package used by
many others.
Merging related packages. When maintaining a group of pack-
ages, it is interesting to know the coupling of each package, as
well as the scope of the coupling and the classes that contribute
to it. This helps decide whether the package can be split, or on
the contrary whether it should be merged with others. In our
experience, we saw that a group of highly coupled packages is
also an indication that the group as a whole should probably
be repackaged, and that a fine grained decomposition may be
counter productive or artificial. To determine whether it is
worth merging related packages, we have to look at how some
specific classes of these packages are used. In this scenario, we
gain valuable information by identifying which classes of a
package are used externally, and by grouping these classes
according to their users.
Splitting packages. Correlated to the previous point, splitting a
package is a useful task since it supports lower memory foot-
print and easier replacement of functionality. Often, before
splitting a package, it can be enough to simply move misplaced
classes. We identify such classes by examining the users of the
class as well as the internal package cohesion. Class co-use also
indicates that the classes may form a coherent package. Never-
theless, co-usage is just a partial view, and it should be comple-
mented with the identification of helper classes and with
inheritance constraints (superclasses or subclasses induce
diverse situations and may be packaged differently).

3. Package Fingerprint principles

Our aim is to provide an approach that helps maintainers
understand packages in their context, regardless of what happens
inside packages – since this is considered as a hidden-information
from the point of view of its system [38]. We will focus on a pack-
age as a provider and/or client offering and/or requiring function-
alities to/from other packages within a system.

To meet some of the requirements mentioned in Section 2, we
propose two complementary views for incoming and outgoing ref-
erences through the fingerprints. The objective of Package Finger-
prints is to provide an overview of package cohesion and
coupling by stressing the client/provider relationships of the clas-
ses contained in the considered package. As such it is complemen-
tary to traditional coupling/cohesion metrics [7,3]. Before going in
detail, we setup the vocabulary and the intention of fingerprints.

3.1. Terminology

Fig. 1 illustrates the terminology we use in the rest of the paper.
First, by reference, we mean that a class A refers to a class B that A
statically uses the name of, or invokes methods of B. It is worth to
note that we extract inter-class references using static analysis the
concerned software system. This way, method invocations are
linked to the declared type (i.e., class) of the objects whose meth-
ods are invoked in run-time. As a consequence, our approach full
short of support method late-binding in the presence of polymor-
phic invocations. In addition, in the case of dynamic typed lan-
guages (e.g., Smalltalk) we often can not statically determine the
declared type or the class of the invocation target object in the

run-time. In such a case, our strategy consists in creating a refer-
ence for every potential candidate class (i.e., every class within it
there is a method that has the invoked method signature). These
limitations can be addressed with additional dynamic analysis of
method invocations.

We mean by internal references the references which are
among classes packaged in the same package. Otherwise, refer-
ences are external. In this context we mean that a package Pi refers
to another Pj if Pi contains a class Ci that refers to another class Cj

packaged in Pj. In the same vein, we say that Pi refers to Cj, Ci refers
to Pj, and Pj is referenced by Ci and by Pi. As a shortcut, when we say
that a package P refers to another package Q, we mean that classes
contained in P refer to classes of Q. In this context we say that P
and Q are coupled [30].

Definition 1 (In-Interface). The In-Interface of a package P is
the set of classes of P which are referenced by classes packaged
outside P.

Definition 2 (Out-Interface). The Out-Interface of a package P is
the set of classes of P that refer to classes packaged outside P.

As shown in Figs. 1 and 2, the size (i.e., number of classes) of the
In-Interface gives maintainers a quantified information about the
dependency of the system on the package under analysis P1, while
the number of referencing packages shows the importance of P1 for
the system. Similarly, the size of the Out-Interface of P1 gives main-
tainers a quantified information about the dependency of P1 on
other packages, while the number of referenced packages shows
how much P1 depends on the system.

Since referencing a class is an indicator of the usage of that class
functionalities, referencing a group of classes in a consistent way is
an indicator of the usage consistency of those classes. Such a refer-
enced group, that we name a service, represents classes whose
functionalities are consistently used together.

Definition 3. ServiceIn the context of a package P, we mean by
Service, the set of classes of P In-Interface which are referenced
together by the same group of packages. This is related to the
Release Reuse Equivalency (REP) principle (see Section 2.2) where
good package should only contain a group of classes that are
reusable together.

Martin [31] defines a class responsibility as a reason for change.
From the view point of inter-class references, if a class A refers to
another one B, changes in B may be a reason for changes in A. At a
high-level of abstraction, if A refers to a package P, changes in P
may be a reason for changes in A. In this context, we define a pack-
age reason-for-changing as follows:

P2
P1

P3

A1

B1

C1

D1 E1

client 
packages

In-Interface

A2

A3

P4

A4
B4

F1

H1

I1

G1

P5

A5
B5

P6
A6

B6

C6

provider
packages

Out-Interface
package under analysis 

Legend:
Internal
reference

External
reference

Fig. 1. Terminology—an example of references between packages: P1 contains nine
classes, it has three clients (P2, P3 and P4) and two providers (P5 and P6). Both In-
Interface and Out-Interface of P1 contain five classes, with C1 in common.
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Definition 4 (Reason for changing). In the context of a package P, we
mean by Reason for Changing, the set of classes of P Out-Interface
which refer together to the same group of packages. This is related to
the Common Closure (CCP) principle (see Section 2.2) where a good
package should group together classes that change together.

3.2. Fingerprints intention

To understand the multiple facets of a package, we group its
classes according to their usage by other packages and their usage
of other packages. Fig. 2a shows the In-Interface classes of P1

grouped into clusters as well as the references that point to those
clusters, while Fig. 2b shows the Out-Interface classes of P1

grouped into clusters as well as the references that go out from
those clusters. Fig. 2a shows that P1 provides three services (S1,
S2 and S3): the service S3 is used by the client packages P3 and
P4; additionally, P3 with P2 use the service S2; the service S1 is used
by the client package P2 only. Fig. 2b shows that P1 involves three

reasons for changing (R1, R2 and R3): R1 represents the class F1

which refers to P5, R2 represents the classes C1 and H1 which refer
to P5 and P6, while R3 represents the classes I1 and G1 which refer
to P6.

Clustering the In-Interface and Out-Interface helps identifying
the inter-dependencies between the package under analysis and
the system, and thus which classes are conceptually coupled and
which classes are not. At a higher level of abstraction, this helps
answering the following questions:

� What services does the package provide?
� Which packages use those services?
� Does the package include classes that are always used together

or not?
� Does the package include classes that use the same services/

packages or not?
� Which are the reasons for changing the package?
� How are those reasons for changing distributed over the pack-

age classes?

P1

A1

B1

C1 D1 E1

client 
packages In-Interface

… and from 
P4 and P3 

classes referenced
from P2 only

… from P3 and P2

P2

P3

P4

S1

S2

S3

(a) Grouping the classes of the In-Interface of P1
by common client packages.

P1

F1

H1C1

I1 G1

provider 
packagesOut-Interface

classes referring
to P5 only

… to P5
and P6

P5

P6
… and to
P6 only

R1

R2

R3

(b) Grouping the classes of the Out-Interface of P1
by common provider packages.

Fig. 2. Grouping incoming and outgoing references into In-Interface and Out-Interface interfaces.
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P3  P1

P4  P1

P2  P1

P4  P1

P3  P1

P3 P4 P2

P3

P4

P2

P3  P1

P4  P1

P2  P1

Diagonal 
 distribution of references from P2 to P1

over classes in In-Interface of P1 

Borders
packages referencing P1 sorted by 
number of referenced classes in P1
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Co-Using 
 classes in In-Interface of P1
used from both P2 and P3

P3  P1
P3 references to P1

1
class

3
classes

01
class

03
classes

5
classes P3 P4 P2

P3

P4

P2

4
classes

3
classes

2
classes

P1 In-Interface
classes

P2's 
references to 

P1

P2  P1

P3  P1

Fig. 3. Skeleton of the incoming fingerprint for P1 (Fig. 2).
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The incoming fingerprint shows how the package under
analysis is used by the system and how this use is distributed
over its classes. The outgoing fingerprint shows how the package
under analysis uses the remainder of the system. Since we use
the same approach for both views, we only present the incoming
fingerprint in details and briefly sketch the outgoing fingerprint
further on.

Fingerprints have the four following properties: they are
compact (only the references are shown), zoomable (different levels
of information are proposed), entity-based in the sense that they
focus on one package, and semantically rich since they present mul-
tiple types of information at a glance.

3.3. Fingerprint skeleton

Fig. 3 depicts the key visualization principles of an incoming fin-
gerprint with P1 from Fig. 1 as the package under analysis. We first
present the basic layout before introducing additional features we
give to convey more information on package relationships. The
skeleton layout of a fingerprint is the following:

Analyzed package. The top left corner cell indicates global infor-
mation about the package under analysis (here P1): the size of
its In-Interface and the internal references between its classes.
Internal references are explained and illustrated in Section 3.4.
Referencing packages. The cells at the borders of the finger-
print, i.e., the leftmost column and the topmost row, both rep-
resent the referencing packages placed in the same order
horizontally and vertically (i.e., there is a symmetry). Packages
are sorted according to the importance of their references: the
more referenced classes a package refers to, the closer it is to
the top left corner. Fig. 3 shows the three packages that refer
to P1 in Fig. 1: P3, P4, and P2, referencing respectively four, three,
and two classes inside P1.

If two packages make the same number of references, we then
group them using a similarity criterion. We define this latter in
an incoming fingerprint, as the number of shared referenced clas-
ses among packages. For example, in Fig. 2, we consider that P4 is
more similar to P3 (3 referenced classes in common) than to P2

(no referenced class in common). Conversely, we define the simi-
larity of referenced classes by the number of referencing packages
they share. Fig. 2 shows that the similarity between C1 and D1 (two
common referencing packages P3 and P4) is higher than the similar-
ity between C1 and B1 (1 common referencing package P3). In any
case, the ordering algorithm we have implemented always respects
the number of references prior to similarity.

Cells. The body cells of an incoming fingerprint, i.e., all cells
except those on the leftmost column and the topmost row, each
represents a subset of the In-Interface of the package under
analysis. This subset contains the classes that are referenced
by both packages placed at the heads of the cell’s row and col-
umn. For a package P that is referenced by P1, . . . ,Pn, a cell on
row i and column j, cell(i, j), represents the subset of classes of
P that are referenced by both Pi and Pj (i.e., cell(i,1) and cell(1, j)).
Two situations occur: either a cell is on the main diagonal or not.
� The main diagonal presents the distribution of the In-Inter-

face on the client packages. Fig. 4 shows that cell(3,3) repre-
sents the classes (C1, D1, E1) referenced by P4, i.e., cell(3,1)
and cell(1,3).

� The other cells present the classes referenced in common by
both packages represented by the row and column heads.
Fig. 4 shows that cell(2,4) contains the class B1, referenced
by both P3 and P2.

We define the size of a cell as the number of classes it repre-
sents. Hence, in Fig. 4, cell(2,2) has size 4 and cell(3,3) has size 3:
classes C1, D1, and E1 are represented in both cells, but class B1

in cell(2,2) only.

3.4. Enriching the fingerprint skeleton layout

We enrich the skeleton of Fig. 3 to convey extra information
such as the amount of referenced classes in the analyzed package.
For this purpose we use color intensity for cells, cell borders, and
the position of classes within cells.

We selected those visual properties according to several re-
search works that address the characteristics of efficient visualiza-
tions [46,48]. Particularly, as our focus is on providing a first
impression of a package and its context, we expect that pre-atten-
tive processing will occur but we do not know to what extent1 as
much as possible to help spotting important information [23,48,45].

Cell internals. Inside a cell, we visualize the package referenced
classes as small filled squares. To enable pre-attentive process-
ing [23], we give each class a fixed place which is the same in all
the cells of a fingerprint. When a cell represents a package ref-
erence to a class of the analyzed package, the location of this
class is colored: in Fig. 4, since the class B1 is referenced by
packages P3 and P2, the position corresponding to the class B1

is colored in the cell(2,4). This way all the cells will have the
same geometrical size (i.e., height and width), but the number
of classes represented by the cell is given by the number of
the colored squares inside that cell.
Information on internal references. Information on internal
references among classes of the analyzed package is visualized
on the top left corner (cell(1,1)). In Fig. 4 we see that among the
five referenced classes of P1, only C1 is referenced internally (as
it is colored). Additionally, since not all classes will appear in all

Left Border:
Referencing packages

D1 E1

Cell(3, 2)

C1

Cell(4, 3)

B1

Cell(4, 2)

Cell(1, 2) Cell(1, 3) Cell(1, 4)

Main
 D

iag
on

al

2

3

P1
D1

A1 C1

E1

B1

Cell(1, 1)

B1

Cell(2, 4)

Cell(3, 4)

A1 B1

Cell(4, 4)

Cell(3, 3)

Cell(2, 2) Cell(2, 3)

D1 E1

C1

D1 E1

C1

Cell(3, 3)

Cell(2, 1)

Cell(3, 1)

Cell(4, 1)

P3

P4

P2

Cell(3, 1)

Cell(4, 1)

P3 P4 P2

Cell(1, 2) Cell(1, 3) Cell(1, 4)

B1

D1

C1

E1

Cell(2, 2)

Top Border:
Referencing
packages

2

Top Left Corner:

1 Analyzed package
In-Interface

Fig. 4. Showing the incoming fingerprint of P1 (Fig. 3) with the classes involved in
the relations inside each cell.

1 Researchers in psychology and vision have discovered a number of visual
properties that are preattentively processed. They are detected immediately by the
visual system: viewers do not have to focus their attention on a specific region in an
image to determine whether elements with the given property are present or absent.
An example of a preattentive task is detecting a filled circle in a group of empty
circles. Commonly used preattentive features include hue, curvature, size, intensity,
orientation, length, motion, and depth of field. However, combining them can destroy
their preattentive power. Some of the features such as motion are not relevant in our
context.

1316 H. Abdeen et al. / Information and Software Technology 52 (2010) 1312–1330



Author's personal copy

cells, we use this corner cell to show all the placeholders for the
classes that have incoming references, as bordered squares.
Colors. We use color hues to distinguish different entities in the
fingerprint (e.g., classes, packages), and to give more informa-
tion about the references. The colors we use are: (1) shades of
gray for all the cells in a fingerprint except the top left corner,
(2) blue for the classes (3) red for the top left corner and for
highlighting the borders of the main diagonal cells (4) orange
to highlight the fingerprint borders, (5) gold to highlight bor-
ders of the referencing packages that are outside the scope of
the system under analysis (called stubs thereafter).
Color intensity. In addition to color hues, we use color intensity
to give more information on the visualized entity: (1) for the
top left corner, the darker the package, the bigger its In-Inter-
face; (2) for the fingerprint borders, the darker a referencing
package, the more classes it references in the analyzed package;
(3) for the body, on a given row, the darker the cell, the more
classes it represents. The darkness of a cell is calculated rela-
tively to the size of the diagonal cell of that row. As conse-
quence, the cells of the diagonal are black. On the fingerprint
borders, we consider the color intensity for a referencing pack-
age as an additional visual information: as referencing packages
are sorted according to the importance of referenced classes
and similarity criteria (Section 3.3), we use a same color inten-
sity for referencing packages with a same number of referenced
classes. Indeed, those packages are placed in different order but
have the same color intensity. Fig. 4 shows that P3 is darker than
P4: the first package refers to 4 classes in P1 while P4 refers to
three classes in P1.

The color of the top left corner is based on an In-Interface size
ratio: the size of the In-Interface of P1 is 5 (Fig. 2a) while the size of
P1 itself is 9 (Fig. 1). Thus the color intensity of this cell equals 5/9.

In Fig. 4, cell(2,3) is darker than cell(2,4), because the first con-
tains three classes while the latter contains 1 class; cell(4,3) is
white (i.e., the color intensity is zero) because no referenced class
inside. cell(3,2) is darker (it is black) than cell(2,3) although they
both contain the same set of classes: the reason is that the dark-
ness of the former is relative to the size of cell(3,3) while the dark-
ness of the latter is relative to the size of cell(2,2). This darkness
relativity informs us that: for P1, all the classes referenced by P4

are also referenced by P3 but some classes referenced by P3 (i.e.,
B1) are not referenced by P4.

4. Detailling a fingerprint

In this section we present an example that illustrates how a fin-
gerprint is used to analyze package references. Fig. 5 shows the
incoming fingerprint of the JBoss render::renderer package (referred
to as P here), visualized in the context of his subsystem, named
them. As a whole, Jboss is composed of 544 packages; theme is com-
posed 15 packages totaling up 119 classes.

No internal reference. As depicted by Fig. 5, none of the small
squares on the top left corner cell (P) is filled: this means that
there is no internal reference within the considered package.
Actually, this package only contains Java interfaces.
Big number of external incoming references. The top left cell
P is dark red, therefore most of the classes of render::renderer
have incoming references from other packages. By looking at
the number of squares in cell P we can estimate the size of its
In-Interface (11 classes here).
Small number of referencing packages. The fingerprint has a
relatively small number of rows and columns: only eight other
packages reference classes of the package under analysis.

Two external packages, P4 and P7, have a gold border color,
rather than orange. This means that they are stubs, i.e., they
are not part of the system under analysis theme. Indeed, when
moving the cursor over these cells a fly-by-help reveals their
names test::theme and test::theme::renderer. Thus those two
packages are part of the test subsystem rather than theme,
and probably mainly contain test classes. Moreover, since P
(render::renderer) is only used by 6 of the 15 packages of his
subsystem and two external test packages, it does not have a
direct role outside the subsystem theme. Thus we can qualify
render::renderer as a peripheral package.
Commonly referenced classes. Since the small squares repre-
senting classes keep their positions in every cell, they make it
possible to spot patterns. For instance, most cells in the rows
of P6 and P7 show the same 3-square shape, highlighting com-
monly referenced classes.
Dominant package. As P1 is the top/left-most package, we
know that it makes the most references to P. We can also see
that all cells in the column of P1 are black; this means that
the corresponding packages (P3, P4, P6, P7 and P8) refer to sub-
sets of the classes that are referenced by P1: P1 is thus a domi-
nant referencer of P.
Classes with different reasons for changing. At a first glance,
the fingerprint body looks quite filled up: only one cell of the
main diagonal (B) breaks the fill and causes a white cross hair
shape. A white cell means that there is no shared reference to
P between the two packages for this cell, e.g., there is no
shared reference between P1 and P5, nor between P3 and P5,
etc.

The cell B contains five squares, for the five classes referenced
by the package P5. Cells denoted by DB represent the non empty
intersection of cell D with cell B, i.e., the four classes referenced
from both P5 (cell B) and P2 (cell D).

Examining cell CD, which represents the common referenced
classes from both P1 (cell C represents six referenced classes) and
P2 (cell D represents six referenced classes), reveals that P1 and
P2 have only 2/6 referenced classes in common. For this reason cell
CD is lighter than cells C and D. Similarly, cell CB, which represents
the common referenced classes from both P1 and P5 (cell B), reveals
that P1 and P5 do not have common referenced classes. For this rea-
son cell CB is clearly lighter (i.e., white) than cells C and B.

Thus we learn that the analyzed package contains two dis-
jointed subsets of classes: the first one with six classes (cell C) rep-
resents the subset which is referenced by all the client packages
except P5; the second one with five classes (cell B) represent the

Interfaces that are 
for therendering of 

some graphical 
items (e.g., Page, 

Window, etc.)

Interfaces that are for the
rendering "context" of some 
graphical items (e.g., Page, 

Window, etc.)

C

render P5

P2

B

D DB

DB

No internal 
references

P2

P5

tag::basic

P1

P1

P

stubs

CD

CB

CD CB

impl::render::
dynamic

tag P8

P8

P3

P3

P4

P6

P7

P4 P6 P7

Fig. 5. The incoming fingerprint of the package render::renderer, from the them
subsystem of Jboss.
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subset which is referenced only by P5 and P2. P2 refers to classes of
both subsets, but it refers to four classes from B (DB) and just two
from C (CD). These subsets (C and B) hint at a possible way to split P
into two more cohesive packages.

Based on that, we suspect that it is possible to remodularize the
package, for example by moving C classes to a new package. This
will make the package under analysis (P) conceptually more cohe-
sive while providing one group of classes (B) used together by P5

and P2. We check this hypothesis by reading the code of B and C
classes. We learn that B classes represent the interfaces of item
renderings (e.g., PageRenderer, WindowRenderer, etc.), while C clas-
ses are the interfaces of item rendering contexts (e.g., PageRender-
erContext, WindowRendererContext, etc.). The referencing package
impl::render::dynamic (P2) contains classes that implement some
of the interfaces of B. The referencing package render (P5) contains
the class renderContext that refers to B interfaces. This class render-
Context, which implements the facade pattern, is responsible of the
communication with different objects whose types are declared via
the interfaces (e.g., PageRenderer, WindowRenderer, etc.). C inter-
faces are implemented by classes contained in different packages
(e.g., tag::basic, tag) which are responsible of different contexts of
item rendering.

Reading the code reinforced the difference in the usage of
both interface collections (B and C) the fingerprint revealed. It
consequently reinforced our idea to move C classes to a new
package, named for example render::rendererContext, for better
modularization.

5. Reading and interacting with an incoming fingerprint

Even if we use the same mechanisms for both incoming and
outgoing fingerprints, we detail in this section incoming finger-
prints. Outgoing fingerprints are briefly described in Section 6.
We introduce two levels of zoom-outs to: (a) keep the visualization
compact and scalable over a number of referencing packages or the
size of the interface; (b) support global visual patterns as presented
in Section 7, while minimizing information loss compared to the
details presented in Section 4.

Zoom-out level 1. We do not visualize the cell internals. We
only visualize in the main diagonal the size of each cell, i.e.,
the number of referenced classes.
Zoom-out level 2. We visualize the fingerprint without the cell
internal information and the size of main diagonal cells.

Fig. 6 shows the fingerprint of the renderer package, illustrated
in Fig. 5, zoomed-out twice. In the first zoom-out we do not see the
information about the classes represented by cells, but we can esti-
mate the size of any cell using its darkness and the size of the main
diagonal cell which is located on its row. This last information is
hidden in the second zoom-out.

5.1. Interacting with the fingerprint

To help users detect quickly information within the fingerprint,
we have introduced an interaction mechanism to the visualization,
as shown in Fig. 7.

Fig. 7a shows that the selection of a cell makes its fill color gold
and its border color green. In addition it automatically selects all
cells that display a subset of classes presented by the first selected
cell. This highlights a family of packages based on their co-refer-
encing of the analyzed package classes. The fill’s color of the cells
which are automatically selected is also gold but with different
intensity. The cell which contains the biggest number of classes,
is the cell with the darkest fill color. We do the same at the class
level: The classes that are contained in the selected cell get their fill
color green. This highlights a family of the analyzed package clas-
ses based on their co-usage.

In addition to the selection and marking mechanisms, we have
introduced a new interaction with the fingerprint: by moving the
cursor over any cell a fly-by-help shows us the size of the cell
and the set of the classes it represents (Fig. 7b).

5.2. Reading the fingerprint

We believe that a package fingerprint, as described in Section 4,
helps developers understand and analyze a given package, while
the fingerprint zoom-outs help visualize large number of packages,
easily navigate in the system and detect global information (e.g.,
patterns, anomalies, etc.). To understand and analyze any package
in detail, the developer can select it and zoom to its full fingerprint
at any time.

Examples. Fig. 8 shows the incoming fingerprint of the package
utils of the subsystem plugins, taken from Azureus system. In the
following section we illustrate how to read this incoming finger-
print, and which relevant information we can get.

Size. At first glance, the size (i.e., width or height) of the finger-
print is relatively large and all referencing packages are golden
bordered. That means the utils package is referenced by a big
number of packages that all are located outside the subsystem
plugins.
Spread of external incoming references. The top left cell (P) is
dark red, which means that most of the package classes are ref-
erenced from the outside, i.e., the size of its In-Interface is rela-
tively big.
Distinct part users. The fingerprint fill shows that some cells on
the main diagonal (circled in green) are isolated within their
row: i.e., the rows are nearly completely white. These cells
identify services provided by the analyzed package for only a
couple of packages. Classes represented by those cells are con-
sidered as lightly coupled in the context of the package, and
their presence degrades the package cohesion.
Systematic package external usage. The fingerprint fill shows
a black filled rectangle Z3 at the intersection of the rows and
columns of the packages Pkgs3. This indicates that the cells
within Z3 represent the same collection of classes that are refer-
enced together by all packages Pkgs3. In the same way, we can
deduce that those classes are also referenced together by the
packages Pkgs2 and Pkgs1: see the black filled rectangles Z3,2

and Z3,1. These set of classes are referenced together from most
of the referencing packages: they are highly coupled within the
package under analysis. Furthermore, the presence of dark/
black rectangles within the fingerprint body is an indicator of
the package cohesion: the more black space, the more cohesive
the package is.
Strength of use-based class cohesion. Comparing black filled
rectangles according to their size also provides another useful

Zoom-out level 1 Zoom-out level 2

Fig. 6. The incoming fingerprint of renderer package (Fig. 5) zoomed-out twice.
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information related to the cohesion based on usage: the larger a
rectangle size is, the higher the coupling between the classes repre-
sented by it – since more client packages used them together.
For example, classes represented by the cells within the rectan-
gle Z2 are less coupled than the classes represented by the cells
within the rectangle Z3.
User heterogeneous references. The fingerprint body is not
symmetrically dark. While the classes that are together refer-
enced by the packages Pkgs1 and Pkgs3 are respectively repre-
sented by the rectangles Z1,3 and Z3,1, the former is light gray

while the latter is completely black. We deduce then that the
classes referenced by Pkgs3 form a small portion of the classes
referenced by Pkgs1. Thus, the dissymmetrical darkness of the
fingerprint body indicates that the package In-Interface con-
tains classes that are loosely coupled in the context of the pack-
age under analysis. As consequence, this is an indicator of a bad
organization of classes.

6. Outgoing fingerprint

Up to this point we limited our presentation to incoming refer-
ences; now we also propose the symmetrical view. The package
outgoing fingerprint helps maintainers coarsely evaluate the pack-
age coupling with the rest of the system and the potential impact
of changes on the package, and understand how the package under
analysis uses the rest of the system. Also, it focuses on the similar-
ity/coupling between the referencing classes and the cohesion of
the considered package, from the point of view of a given provider.

Figs. 9 and 10 depict the key visualization principles of an out-
going fingerprint with P1 from Fig. 1 as the package under analysis.
The principles we described above for an incoming fingerprint
(Sections 3.3 and 3.4) are used exactly in the same way, except that
we take into account outgoing references instead of incoming ones
and referenced packages instead of referencing ones: the refer-
enced packages and the Out-Interface of the package under analy-
sis. In an outgoing fingerprint, the package under analysis is
located on the top right most corner, i.e., the top right corner, and
the diagonal is crossing in the other direction. Also the referenced
packages form the right border of the package outgoing fingerprint.

Examples. Fig. 11 shows the outgoing fingerprint of impl::api::u-
ser package. The fingerprint shows several important pieces of
information:

A misplaced class. The package Out-Interface involves only two
classes, UserEventBridge and UserEventIntercepter. In the top

C

P5

P2

B

P2

P5P1

P1

P

P8

P8

P3

P3

P4

P6

P7

P4 P6 P7

Selected 
cell

Marked 
package

(a) Interacting with the Fingerprint of renderer package (Figure 5). P5 is
marked in Yellow and the cell C is selected (gold fill and green border).
Thus, all the classes of C are highlighted in green. In consequence, each
cell that represents only a subset of those classes is also selected.

(b) Interacting with the zoomed-out Fingerprint of renderer package (Figure 5). The
cursor is over the cell B and a fly-by-help shows us B size and the set of the classes it
represents.

Fig. 7. Interacting with the fingerprint.

Pkgs1 Pkgs2 Pkgs3

Pkgs1

Pkgs2

Pkgs3

P

Z3Z3,2Z3,1

Z2,1 Z2 Z2,3

Z1 Z1,2 Z1,3

Fig. 8. The incoming fingerprint of utils package, from plugins subsystem (Azureus
application).
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most corner, the square presenting the class UserEventIntercept-
er is not filled, which means that this class does not refer to
classes inside the package under analysis impl::api::user. On
the another hand, this class refers to classes packaged into three
packages, the group Pkgs2. We suppose then that it is better to
move the class UserEventIntercepter to one of its provider pack-
ages. Inspecting UserEventIntercepter, we found that it has nei-
ther incoming references nor inheritance inside its own
package; it inherits from the class ServerIntercepter, which is
packaged in portal::server, which in turn is one of the provider
packages. That enforced our estimation and we think that mov-
ing UserEventIntercepter to the package portal::server will opti-
mize the cohesion of both packages.
Distinct providers used by the package. The classes of the ana-
lyzed package reference two distinct groups of packages (Pkgs1
and Pkgs2 on the figure). Since the cells form two distinct

squares of uniform color around the main diagonal, both groups
of referenced packages are uniformly accessed.
Distinct reasons for changing the package. The view also
reveals the input source for each class of the package Out-Inter-
face. The view shows that each class refers to distinct groups of
packages/classes. Changes within the group Pkgs1 directly
impacts only the class UserEventBridge, while changes within
the group Pkgs2 directly impacts only the class UserEventInter-
cepter. Here we deduce that the package under analysis has
two distinct reasons for changing (Definition 4).

7. Visual patterns

While applying fingerprints to large systems (Squeak, Azureus,
Jboss, ArgoUML) we identified some recurring visual patterns.
We present here the most frequent ones, knowing that several pat-
terns could occur within a single fingerprint. We describe the sys-
tems we selected and the reasons why we selected them. We
conducted these experiences to show what can be deduced from
fingerprints, and how fingerprints help focusing on the code while
browsing it. We provide several VisualWorks Smalltalk images
with the case studies data presented in this paper loaded, at
http://rmod.lille.inria.fr/archives/demos/PackageFingerprints.

7.1. Characterizing the systems under analysis

Table 1 presents some measures about the systems we selected
for our experience. The number of packages has been computed by
counting only the packages containing the name of the project. For
Java projects, we ignore inner classes.

Squeak. Squeak is an open-source Smalltalk environment devel-
oped by the team of Alan Kay since 1996. It involves around 20 ac-
tive developers and 200 committers. It is a really large and
complex system containing more than 1600 classes and 32,000
methods in its latest public release (3.8 basic). Squeak includes
support for different application domains: two large graphical
user-interface frameworks, a complete IDE (including an incre-
mental compiler, debugger and several advanced development
tools), a complete language core and its libraries, multimedia sup-

Borders
packages referenced by P1, sorted by 

number of referencing classes in P1
Analyzed
package

P1  P6

P1  P5

P1  P5

P1  P6

P5 P6

P5

P6P1  P6

P1  P5

Diagonal 
distribution of references from P1 to P5

over classes in Out-Interface of P1 

P1's 
references to 

P5

Co-Using 
 classes in the Out-Interface of P1

using both P5 and P6

P1  P6:
P1 references to P6

2
classes

2
classes

5
classesP5 P6

P5

P64
classes

3
classes

Classes in P1's
Out-Interface

P1  P5

P1  P6

Fig. 9. Skeleton of the outgoing fingerprint for P1 (Fig. 2b).
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port (images, video, sound, voice generation), eToy (an advanced
scripting programming environment for children), various libraries
(compression, encryption, networking, XML support).

Our hypothesis: Squeak is based on a monolithic design and was
not really engineered with modularity in mind. In addition, it is a
large and complex system which evolved over a time span of 15
years. We expect to see co-use, packages with too many responsi-
bilities, as well as some tangling between groups of packages. We
are really familiar with the code.

JBoss. JBoss is a widely used Java application server. The domain
is more restricted than the one of the previous system. It has a
large base of developers. JBoss was also designed in presence of a
package system so it should be more modular.

Our hypothesis: JBoss is an industrial standard and we expect it
to be of good quality and modularity and to get fingerprints show-
ing cohesive packages. We were not familiar with the code.

ArgoUML. ArgoUML is an UML editing tool. It is a small applica-
tion, mainly developed by a couple of core developers and several
committers. Its design suffers from large facades, but otherwise we
were not familiar with the code.

Our hypothesis: ArgoUML has known problems with large clas-
ses and we want to see if fingerprints help us to understand how
they could be split.

Azureus. Azureus is a peer-to-peer client. It represents a middle
size application with a large number of classes.

Our hypothesis: We expect it to be normal application quality
and to get fingerprints showing small or medium cohesive pack-
ages. We were not familiar with the code.

7.2. Black fill pattern

This pattern is characterized by a complete black fill of the fin-
gerprint as shown in Fig. 12. This pattern occurs when all the pack-

age interface classes are conceptually coupled: for an incoming
fingerprint, all the In-Interface classes are referenced together by
every referencing package, while for an outgoing fingerprint, all
the Out-Interface classes refer together to every referenced
package.

In our case studies, and in the context of the incoming finger-
print, this pattern occurs for small size In-Interface packages, par-
ticularly when they export only one class, or when the package is
referenced by a small number of packages. Peripheral packages of-
ten present this pattern.

Referenced as a single service. In this pattern, the classes of
the package In-Interface are always referenced together as a
single service. Thus, such a package is often characterized by
a high degree of cohesion because all its classes tend to fulfill
a single service, and the package design respects the package
cohesion principles REP and CRP (described in Section 2.2).
Referencing all the same services. For outgoing fingerprints,
this pattern occurs also for small size package Out-Interface,
or when the package refers to a small number of packages.
Exhibiting a black fill pattern reveals that all the classes of the
package Out-Interface refer together to the same group of pack-
ages i.e., same reasons for change. Thus we can conclude that
they have a high degree of similarity in terms of required ser-
vices and responsibility—since all the package classes refer to
the same group of packages, they have the same source of
changes impact.

In consequence, packages that exhibit the black fill pattern for
incoming and outgoing fingerprints, may represent a good archi-
tecture design since: (1) they respect the three cohesion principles,
(2) it is easy to know which services the package provides and it
provides them to which packages, and (3) maintainer can see
quickly which services/packages the package uses. Note that when
several classes are doing consistently several and similar refer-
ences to external classes, leading to an outgoing black fill, this pat-
tern may reveal a lack of factorization within the package violating
the DRY (Do not Repeat Yourself) principle [19].

Examples. Fig. 12 shows some fingerprints that present this
pattern.

A well encapsulated package. Fig. 12a shows the incoming fin-
gerprint of the package SMBase::domain of Squeak38, which

The Out-Interface
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Package 
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Pkgs2

UserEventBridge

UserEventIntercepter

Referenced 
Packages 

Referenced 
Packages 

UserEventBridge class
referencing classes inside the package
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does not referencing classes inside the package 

Zoom-Out level 1 

core::event

api::event

api::user::event

java::lang

java::util

core::impl::api

java::security

common::invocation
portal::server

Fig. 11. The outgoing fingerprint of impl::api::user package, from the subsystem Jboss.portal.core.

Table 1
Overall system data.

System Release Packages Classes Methods

Squeak 3.8 Basic 223 1659 37,952
JBoss portal 2.6 454 1889 15,498
Azureus 2.5 337 1646 19,745
ArgoUML 0.22 76 2222 11,467
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defines the domain model of a source management system. It
shows that SMBase::domain exports only one class (SMSqueak-
Map) to only four packages of Squeak38 system. Thus we know
that the services provided by this package are exactly the role of
SMSqueakMap class and we know that this class provides spe-
cific services – since it is referenced by only four packages
within the system. Note that SMBase::domain contains 14 clas-
ses, but understanding its role requires understanding only
one class of those classes. In such a context we say that the
package design respects the hidden-information principle.
A provider of abstract service. Fig. 12c shows the incoming fin-
gerprint of notation package of argouml::uml subsystem. It
shows that uml::notation exports only one class NotationProvid-
er. By reading this class and its hierarchy we found that it is the
interface which is implemented by every UML’s element nota-
tion (e.g., AttributeNotation, MessageNotation, ObjectNotation,
etc.). notation package includes all those classes (18 classes)
but it provides them to the system via their top superclass
NotationProvider.
A package with a single reason-for-changing. Fig. 12b shows
the incoming and outgoing fingerprints of config package of the
jboss::portal::server subsystem. Both fingerprints present the
Black Fill pattern. The outgoing fingerprint shows that the pack-
age Out-Interface contains only one class: ServerConfigService.
By reading this class we found that it implements the interface
ServerConfig which is the only class provided by the package:
the incoming fingerprint shows that the package In-Interface
contain only ServerConfig. Thus we deduce that the package
has a single reason-for-changing, which is the class ServerCon-
figService. On the another hand, to understand the package role
is enough to understand the interface ServerConfig or its imple-
mentation provided by the classServerConfigService.

Variation.The package invocation, shown in Fig. 13, illustrates a
variation of this pattern: the fingerprint fill appears as gray layers:
under the main diagonal the cells are black and above it, they are in
progressively lighter shades of gray. We call this variation Black–
White Fill. The fingerprints that present this pattern are usually lar-
ger than those presenting Black Fill. Note that the presence of gray
layers indicates a degradation of the package cohesion.

Providing a set of layered services. In incoming fingerprints,
the Black–White Fill pattern indicates that the package In-Inter-
face involves several groups of classes, where each group con-
tains classes that are referenced together, as a single service,
by a set of referencing packages. In this pattern, the services
are ordered (layered) top-down in the fingerprint: each one
uses the services that are layered below it. Fig. 13 shows that

the bottommost service Service1, which contains the class Port-
letInvocation, is a sub-service of Service2 and Service3: Service2
augments Service1 with class ActionInvocation, and Service3 aug-
ments Service2 with class RenderInvocation. Relating the impor-
tance of a service to the number of packages that refer to it, the
provided services are vertically ordered by importance, with the
most important package at the bottom. In Fig. 13, the bottom-
most service Service1 is referenced by all referencing packages
(all cells into that layer are black). In contrast, the three classes
of Service3 are referenced together only by the packages in
Pkgs3: within the Service3 layer, only cells in the columns of
Pkgs3 are completely black.
Involving a set of layered reasons for changing. For outgoing
fingerprints, the Black–White Fill pattern indicates that the pack-
age Out-Interface involves several group of classes, where each
group present classes that refer together to a set of packages.
Thus we deduce that each group involves a distinct reason-
for-changing. As with services, those groups are layered top-
down by the importance of each group’s reason-for-changing,
i.e., the number of packages the group refers to.

7.3. Arrow pattern

When the only non white cells are the diagonal cells, the finger-
print looks like an arrow.

Providing particular non-coupled services. For incoming fin-
gerprints, this pattern occurs when the package In-Interface
involves several independent groups of classes, where the clas-
ses in each group are referenced together, as a single service, by
only one client package. In other words, each client package
refers to only one service: the relationship between provided
services and client packages is one-to-one.

This means that the package under study provides non-coupled
services to the system. Since each service is used by only one client
package, we also deduce that the provided services are particular
and of minimal importance, i.e., they are neither general nor core
services from the point of view of the package system, and few
packages use them.

Fig. 14 shows the incoming fingerprint of UI package of the it
Squeak38::Monticello subsystem. It shows that the package ser-
vices are used separately, by individual packages from the same
subsystem Squeak38::Monticello: the client package Monti-
cello::Versioning uses the top service which contains the classes
MCVersionInspector, MCSaveVersionDialog, MCMergeBrowser and
MCChangeSelector; the client package Monticello::Repositories uses
another service containing classes MCFileRepositoryInspector and

SMSqueakMap

(a) The Incoming Fingerprint
of domain package of the
Squeak38::SMBase subsystem.

ServerConfigServiceServerConfig

(b) The Incoming and the Outgoing
Fingerprints of config package of the
jboss::portal::sever subsystem.

NotationProvider

(c) The Incoming Fingerprint of notation
package of the argouml::uml subsystem.

Fig. 12. Examples of Black Fill fingerprints.
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MCRepositoryInspector; the last two client packages Monti-
cello::Tests and Monticello::Patching each use a one-class service.

Involving particular non-coupled reasons for changing. For
outgoing fingerprints, the strict occurrence of this pattern
appears when the package Out-Interface involves several
groups of classes, where the classes in each group refer
together, as a single reason-for-changing, to only one provider
package. Like with the incoming fingerprint, there is a one-to-
one relationship between the provider packages and reasons
for changing. The concerned package has thus several non-cou-
pled/mixed reasons for changing, and since these reasons for
changing each use only one provider package, they are rela-
tively simple or clear.
Package may be a candidate for splitting. Since the occur-
rence of Arrow pattern indicates that the concerned package
provides particular services that are used separately or/and it
has several non-coupled reasons for changing, the pattern indi-
cates that such a package could be a candidate for splitting:

moving some classes of the package In-Interface/Out-Interface
to their referencer/referenced packages may optimize package
internal cohesion and reasons for changing.

For example, Fig. 14 shows that the UI package has a typical Ar-
row incoming fingerprint: the four services provided by package UI
are never referenced together. Moreover, the service containing the
classes MCFileRepositoryInspector and MCRepositoryInspector could
be moved out, because they are not referenced from within UI
(they appear as hollow squares in the top left cell). In fact, further
inspection of these two classes revealed that they participate in cir-
cular dependancies, and that moving them to Monticello::Reposito-
ries would improve its internal cohesion as well as that of UI, while
freeing UI of these circular dependancies.

Variant: non-coupled services (reasons for changing) with
distinct importances. A frequent variation of the Arrow pattern
is when the fingerprint’s main diagonal shows black squares,
rather than individual cells, as in Fig. 15a. Again, the presence
of squares around the diagonal only is a good indication that
the functionality of the packages is not cohesive from the cli-
ent/provider point of view. For instance, looking at the outgoint
fingerprint in Fig. 15a, we see that the package under study has
two non-coupled reasons for changing, the most important one
coming from the references made by the class B3DPrimitiveRas-
terizer to the five packages in Pkgs2.
Variant: providing loosely-coupled services. A variation of the
Arrow pattern occurs for incoming fingerprints when some of
the provided services, if not all, are used together by a few num-
ber of referencing packages. In this case, we say that the pack-
age services are loosely coupled and some of the referencing
packages appear as dominant over the other referencing
packages.

Fig. 15b shows the incoming fingerprint of Network::SqueakPage
package of the Squeak38 system. The incoming fingerprint has the

Service1:
class PortletInvocation

Service2: classes 
PortletInvocation (Service1) 
and ActionInvocation

Service3:
classes PortletInvocation,
ActionInvocation (Service2),
and RenderInvocation 

Pk
gs

3

core::controller::portlet
test::wsrp::v1::consumer

faces::component::portlet
portlet::test

wsrp::producer

Pk
gs

2 test::core::state

test::core::model::instance
test::portlet::state

Pk
gs

1

wsrp::invocation
wsrp::aspects::portlet

wsrp::consumer
bridge

portlet::test::support
portlet::impl::jsr168::taglib

core::admin::ui::portlet
core::impl::model::instance

portlet::management
portlet::federation::impl
portlet::impl::jsr168::api
portlet::aspects::portlet

portlet::container
core::aspects::portlet

portlet::state::producer
portlet::state::consumer

portlet::impl::jsr168

Fig. 13. An example of the Black–White pattern: the incoming fingerprint of invocation package, from Jboss system.

MCVersionInspector

MCSaveVersionDialog

MCMergeBrowser

MCChangeSelector MCFileRepositoryInspector

MCSnapshotBrowser

MCPatchBrowser

MCRepositoryInspector

Monticello::Versioning

Monticello::Repositories

Monticello::Tests

Monticello::Patching

Fig. 14. Arrow Pattern: the incoming fingerprint of UI package of the
Squeak38::Monticello subsystem.
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Balloon3D::Wonderland::Morphs
Balloon3D::Kernel::Engine

Balloon3D::Morphic
Balloon3D::Kernel::Meshes
Balloon3D::Tutorial::Demos

Balloon3D::Kernel::Lights
Balloon3D::Wonderland-Lights Balloon3D::Kernel::Lights

Balloon3D::Kernel::Vectors
Collections::Unordered
Graphics::Primitives
Squeak38::Stubs
Collections::Streams
Graphics::DisplayObjects

B3DPrimitiveRasterizer

B3DPrimitiveLightB3DPrimitiveEngine

B3DPrimitiveTransformer

Pkgs1

Pkgs2

Pkgs3

Pkgs4

Pkgs5

(a) The Incoming and Outgoing Fingerprints of Kernel::PrimitiveEngine package of the Squeak38::Balloon3D subsystem.

Morphic::Kernel
Morphic::Books

Morphic::Widgets
Tools::FileList

System::Support
Morphic::Worlds
Kernel::Objects

Service2: class SqueakPage

Service3: classes SqueakPage (Service2) 
and URLMorph

Service4: classes URLMorph, 
SqueakPage (Service3),
and SqueakPageCache (Service1)

Service1: class SqueakPageCache

(b) The Incoming Fingerprint of SqueakPage package of the Squeak38::Network subsystem.

Fig. 15. The variations of Arrow pattern.
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Fig. 16. An example of the Mosaic pattern: the incoming fingerprint of Morphic::Basic package, from Squeak38 system.
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described pattern variation. It shows that the packages Mor-
phic::Kernel and Morphic::Books are dominant referencing packages.
They refer to all the classes provided by Network::SqueakPage pack-
age (three classes: SqueakPageCache, SqueakPage and URLMorph).
The rest of referencing packages refer to distinct groups of those
classes: The referencing packages Kernel::Objects and Mor-
phic::Worlds refer to the class SqueakPageCache (Service1); the refer-
encing packages System::Support and Tools::FileList refer to the class
SqueakPage (Service2); the referencing package Morphic::Widgets
refers, in addition to (Service2), to the class URLMorph. Thus the

classes of the package In-Interface are used together by only two
packages, while the package has seven referencing packages. We
then deduce that the provided services are loosely coupled in the
context of Network::SqueakPage package.

7.4. Mosaic pattern

In this pattern, mosts cells are gray but they do not have an
homogenous darkness, e.g., the incoming fingerprints of the Basic

Group2: CoreHelper,
Facade,
Model

Group4: Facade,
Model

Group3: ModelEventPump,
Facade,
Model

Group1: MetaTypes,
Model

Group5: ModelEventPump,
Model

Mosaic

Pkgs1

Pkgs2

Pkgs3

Pkgs4

Pkgs5

argouml::model Zoom-In
Zoom-In

The package's 
In-Interface
contains 51 classes. 
Only 14 classes, 
among them, 
have incoming 
references inside
the package.

Group6: ModelEventPump,
Facade,
Model,

CoreHelper

Group7: Facade,
Model,

CoreHelper,
MetaTypes,

StateMachinesHelper,
ModelManagementHelper

Mosaic1

Mosaic2

Mosaic3

Mosaic4

Fig. 17. An example of the Mosaic pattern: the incoming fingerprint of model package, from Argouml system.
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package in Squeak38::Morphic or the model package in Argouml
(Figs. 16 and 17).

Large package interface size. The Mosaic pattern occurs usu-
ally for packages whose interfaces (In-Interface and Out-Inter-
face) contain a large number of classes. The incoming
fingerprint of model package (Fig. 17) shows that this package
has a large In-Interface, containing 51 classes, or 45% of the
112 total classes the package contains.

Moreover, out of those In-Interface classes, only 14 have incom-
ing references inside the model package.

Core and central package. This patten occurs usually with
giant fingerprints, i.e., a pattern that reveals a package with a
large interface and which is coupled to a large number of other
packages. In the case of incoming fingerprints, this means that
the package provides a lot of services (i.e., groups of classes
always referenced together, see Section 3.1) that are used by
an important number of packages within its system (see Section
7.5).

Examples. The Basic package whose incoming fingerprint
(Fig. 16) has the Mosaic pattern is also a core package within its
system Morphic. Basic package provides 15 classes to 30 packages.
Only two packages of the referencing packages are stubs, i.e., they
do not belong to the Morphic system. Those stubs are Squeak38::-
Sound package (denoted by 18) and Nebraska::Morphic::Collabora-
tive package (denoted by 26). Thus, Basic package provides 15
classes to 28 of the 45 Morphic packages. This means that more
than 62% of the Morphic packages depend upon Basic package
and this last is a core and a central package within Morphic.

Another example, the model package whose incoming finger-
print (Fig. 17) has the Mosaic pattern is a core package within its
system ArgoUML. In addition to the fact that it contains 112 classes
of the 1671 ArgoUML classes, it is also referenced by 54 packages of
the 76 ArgoUML packages. Also the package In-Interface contains
51 classes, which means 71% of ArgoUML packages depend directly
on 51 classes within the model package. This means that the whole
ArgoUML system highly depends on the model package and this last
plays the role of core and central package within ArgoUML.

Imprecision and difficulty in determining package usage and
role. The occurrence of Mosaic pattern for incoming fingerprints
indicates that the package under analysis provides a large num-
ber of functionalities that are accessed by a large number of
packages in an arbitrary way, i.e., non-consistent way. Thus in
presence of this pattern, it is hard to know which functionalities
are used together and which are not. As a result, it is hard to
identify the role/functionality and to determine the contextual
cohesion of the considered package.

A deeper analysis of the Mosaic pattern is described in [2].

7.5. Other patterns

We present some other less frequent but still interesting pat-
terns with less details.

7.5.1. Unbalanced pattern
This pattern occurs when an incoming or outgoing fingerprint

appears clearly bigger than its counterpart (i.e., its outgoing or
incoming fingerprint). The unbalanced-incoming fingerprint pat-
tern indicates that the analyzed package plays a server role within
the system, rather than a client role. The unbalanced-outgoing fin-

gerprint pattern indicates the reverse case. Two variants of this
general patterns have special interest:

Giant incoming fingerprint. This variant reveals core/central
and utility packages that provide basic services for the system.
Figs. 8, 17 and 16 show respectively that plugins::utils, argo-
uml::model and Morpic::Basic exhibit this pattern.
Empty-outgoing fingerprint. The outgoing fingerprint is
empty, i.e., the package under analysis does not refer to any
package in the system. This occurs for packages that include
only abstract classes or/and interfaces. Such packages are not
impacted by the system.
Empty-incoming fingerprint. The incoming fingerprint is
empty and the package has no incoming references. It is the
case of packages that include abstract classes that are imple-
mented in other packages. This pattern appears for packages
that are leaves in the package structure. This is often the case
for UI application packages.

7.5.2. Golden border pattern
This patterns occurs when all the referencing packages are

stubs (i.e., are not part of the system under analysis). Thus, this
pattern only occurs when the clients of the package under consid-
eration do not belong to the analyzed subsystem (e.g., Plugins
within Azureus Fig. 8). Such packages represent the border of the
analyzed subsystem. This pattern is usually a good sign because
it indicates that the system under analysis tends to be well layered.

Ideally, a subsystem should be composed of three distinct layers
of packages: the first layer presents packages that refer only to
packages outside the subsystem – thus they have Golden Border
outgoing fingerprints – and are not referenced by packages outside
the subsystem; the second layer presents packages that interact
only with packages inside the subsystem; the third and last layer
presents packages that refer only to packages inside the subsystem
and are referenced by only packages outside the subsystem – thus
they have Golden Border incoming fingerprints. Whatever, analyz-
ing and understanding subsystem architecture/layers need a global
view of the analyzed subsystem. DSM views [41] are more suitable
for such analysis.

On the another hand, if a package has Golden Border outgoing
and incoming fingerprints, this means that the concerned package
is bad placed within the analyzed subsystem – since it has no
incoming or outgoing references with the subsystem packages
and it interacts only with packages outside the subsystem.

7.6. Patterns frequency

To give an impression to the readers of the relative importance
of the patterns, we studied of their frequency in the four case stud-
ies. Our process is the following one: (1) we picked random pack-

Table 2
Overall system data – number of patterns (percentage relative to 396 packages
examined).

Pattern Number Description

Black fill 114 (28%) Completely filled with black squares
Black & gray fill 126 (31%) Uniform blocks of black or gray squares
Arrow 106 (26%) Square groups around the diagonal
Break 78 (19%) Filled, except for one spot
Mosaic 78 (19%) Irregular shades of gray, lots of holes
Filled mosaic 9 (2%) Filled but irregular shades of gray
Micro 116 (29%) 2–4 interacting packages
Large 62 (15%) More than 10 interacting packages
Extra large 18 (4%) More than 25 interacting packages
Empty incoming 88 (22%) With no cells
Empty outgoing 14 (3%) With no cells
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ages and applied the incoming and outgoing fingerprints, (2) we
visually identified some of the patterns mentioned previously
and that are briefly described in Table 2. In total, we evaluated
396 packages over a total of 1265 (31%). When a fingerprint exhib-
its several patterns at once, we record one occurrence for each of
the patterns. Fig. 18 shows several instances of the patterns to
illustrate possible variations. Sometimes the distinction between
two patterns is fuzzy, so the categories are not totally rigorous.
The size consideration in the patterns is mentioned to give an
impression of the system from the class usage point of view. Final-
ly, we are aware that tallying pattern occurrences is not a valida-
tion of the approach in itself. We only present these statistics to
give an overall impression of its relevance, but the limited number
of case studies certainly biases which patterns appeared most.

During our systematic application of fingerprint, we noticed
that it is interesting to see packages exhibiting nearly identical pat-
terns. We also got really fast information about packages having
classes not been referenced in the system. We could see differences
between the projects: for example, in ArgoUML, outgoing finger-
prints often contained arrows and breaks, and were larger than
in JBoss or Azareus. ArgoUML also presented a couple of really
large incoming fingerprints, mainly because they offered a com-
plex UI. Since Squeak defines a complete language we had a large
variety of fingerprints and many Mosaics, since the packages were
not designed to be modular or cohesive. In general we noticed a
large number of two or three cell wide fingerprints, which indi-
cates focused client or user packages.

8. Discussion and lessons learned

8.1. Graphical concerns

Fingerprints show in a condensed form, the existing situation of
the code. When packages are not well-designed the patterns are
less apparent but the visualization remains useful as it conveys a
lot of information on the package usage among the system.

Our approach has worked well on our case studies and we have
been able to locate many conceptual bugs and to spot several vi-
sual patterns. It should be noted that we were not familiar with
the case studies before applying our approach. Now we discuss
some design points.

Position choices. A reader often pays more attention to the top
elements than to the bottom ones. Therefore, we grouped the
internal references at the top corner of the package fingerprint,
then ordered the referencing packages in an incoming fingerprint

from the most referencing one at the top to the least referencing
at the bottom (and similarly with referenced packages in outgoing
fingerprints).

Seriation. We ordered referencing/referenced packages that
make the same number of references by similarity based on com-
mon referenced/referencing classes into the package under analy-
sis: the largest number of common referenced/referencing classes
that two client/provider packages have, the biggest similarity the
two packages have; this way, the reader can see which packages
access, or are accessed by, the same groups of classes. During the
design of the fingerprint, we tried ordering packages differently,
e.g., by similarity regardless of how many references they make,
but each time we lost important information i.e., the position of
the most/least referencing packages.

Impact of boundaries. We colored the border of packages that do
not belong to the system under analysis in gold. We found it really
effective to use color to identify the currently selected entities so
that the user can interactively mark entities on which s/he wants
to focus; this increases the usability of the tool.

Zooming. We introduced two levels of zoom-outs with minimal
information loss, so that the visualization remains compact and scal-
able over the number of the related packages or the size of the inter-
faces. This way, the user can visualize large systems, navigate in the
system, spot global patterns and conceptual anomalies. Then he can
focus on any package by zooming into the detailed fingerprint.

However, during our experiments, we found that detailed finger-
prints do not scale as well as the zoomed-out views. Detailed finger-
prints expose a lot of information, which makes it difficult to spot
patterns or gather general information about the visualized pack-
age; this is especially true for giant fingerprints where the package’s
interface and number of related packages are very large. In fact, in
such cases, none of the detailed views we applied has scaled well.
Zooming mechanisms [42] helped us solve this problem.

Placeholders. The placeholders in cell internals are essential to
make pre-attentive processing work and thus to help users quickly
spot which classes are coupled and where they are coupled. The
negative impact of this principle is that all cells should be large en-
ough to represent all possible classes in the package interface. This is
one of the reason why the detailed fingerprints do not scale so well.

8.2. Package cohesion

The presence of dark homogenous zones is a good indicator of
the package cohesion. To assess whether fingerprints do offer a
good indication on cohesion, we computed the Common-Use

Fig. 18. Some instances of the patterns.
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(CU) metrics defined by Ponisio [38] on packages whose finger-
prints clearly showed that they were not cohesive (for example
the packages model (Fig. 17) and Basic (Fig. 16)). The CU metric
computes package cohesion from the reuse of the classes of the
package In-Interface. It takes its value between 0 (no cohesion)
and 1 (best cohesion) [38]. Applying the CU metric gave the follow-
ing results: 0.63 for the Basic package and 0.7 for the model pack-
age. This means that the design of the latter is better than the
design of the former and both packages are considered as relatively
cohesive, which is not what the fingerprint revealed. This experi-
ment is quite limited and this is one of our future work. However,
it does show that the fingerprint is much more than just metrics:
the fingerprint shows which classes are coupled, and which ones
are not, in a consistent way; it also shows the proportion of those
classes within the package In-Interface.

8.3. Hints for code improvements and fingerprint limitations

Incoming fingerprint helps maintainer answer the following
questions about a given package:

� Which In-Interface classes are used together, in a consistent
way, as a single service? And which are not used together, also
in a consistent way, as distinct services?
� Where is a group of In-Interface classes used as a single service?

and where is it mixed with distinct classes of the concerned In-
Interface?
� Which referencing packages refer to a given group of In-Inter-

face classes? And which ones do not refer to that group?
� Which In-Interface classes are highly coupled (i.e., used

together by a large number of referencing packages)? And
which ones are loosely coupled (i.e., used together by a small
number of referencing packages)?
� Which In-Interface classes are considered as most important

(i.e., classes that are referenced by most referencing packages)?
And which In-Interface classes are less important?

Fingerprints limitations. Package Fingerprints focus on the pack-
age contextual cohesion, coupling, and co-use of internal classes.
However, they do not provide a good map for internal references;
our aim is to support understanding packages through their inter-
faces, regardless what happens inside them. With package finger-
print, we consider related packages (e.g., referencing packages in
an incoming fingerprint) as black boxes; we only pay attention to
package classes while we look at its fingerprint. This is clearly a
limitation of fingerprints.

Since package fingerprints do show partial information about
package internal references, hints at improvements, which are re-
vealed by fingerprints, should be verified and complemented by
other information/views. For example, we illustrated in Section
7.3 that an Arrow pattern indicates that the concerned package
may be a candidate for splitting—since it provides distinct non-
coupled services. For such a case, before deciding to split the con-
cerned package, maintainer needs to know if classes that are not
contextually coupled interact with each other. S/he needs to verify
if there are references or inheritance relationships among classes
that are used by distinct packages before deciding to split the pack-
age or to move some classes of that package to other ones.

The primary goal of package fingerprints is to give a fast visual
understanding. It helps maintainers decide whether and how to
remodularize. However, this is not always possible when code is
too complex, as illustrated by the mosaic fingerprints. It should
be noted that we do not oppose fingerprints to other techniques;
on the contrary, we see them as complementary. For example,
independently of this work and this article, we developed comple-
mentary tools to help dealing with packages such as Package Blue-

prints (which is based on a zoom-out visualization and ordering of
internal references between packages) [17]; Orion (which supports
the prediction of change impact) [26] and a Simulated Annealing
search-based technique to help maintainers find good alternative
modularizations [4]. Maintainers can then use the fingerprints to
compare the results, understand the alternatives, and choose the
most suitable modularization.

8.4. A limited user study

Package Fingerprints are a dense and compact visualization,
they were designed to have such property. Still, users may have
difficulty extracting all the information from them. Our current
work lacks a serious user study.

We performed some limited studies with members and stu-
dents of our team not working on fingerprint or visualization in
general but on new language design. The experience was con-
ducted as follows: (1) we presented the fingerprint principles, (2)
provided some simple case with explanation, (3) then we pre-
sented some fingerprints and asked questions about the finger-
prints, (4) at the end we asked if the fingerprints were useful
using a set of questions using the Likert scale.2 The experience is
rather limited since we got only 11 participants but we can already
draw some conclusions.

� Positive points. Our preliminary results show that a first level of
understanding is easy to get: identifying groups of co-referenc-
ing/co-referenced classes; identifying distinct provided services
and distinct reasons for changing; identifying referencing and
referenced packages; etc.

Those users found that, the direction of the diagonal as well as the
small annotations we put on top of the fingerprint to distinguish
incoming/outgoing fingerprint are very helpful. Fingerprints also
support fly-by-help, whose use suggests that showing the names
of the packages on the side may really help creating a deeper con-
text. In addition, showing the referenced/referencing classes with
the fly-by-help makes the visualizations less abstract.

� Negative points. We learned that a deeper level of information
extraction is difficult. This is the case with packages that have
very large interfaces and classes coupled in a non-consistent
way (e.g., the Mosaic pattern). More problematic, this limited
study shows that more than a third of the participants (4/11)
was unable to quickly understand the semantics of the shades
of gray, and why the matrixes are not symmetrical. In addition,
understanding the staircase effects as shown in Fig. 13 was dif-
ficult to grasp for some participants (3/11).

This suggests that fingerprint is good for a fast overview, but
further usability enhancements and studies are required to really
prove the usability when too many details are presented.

9. Related work

Several works focus on understanding packages. These can be
by supporting high-level analyses of package relationships, visual-
izations, software metrics or package evolution.

High-level analyses. We are interested here on those based on
visualizations. Sangal et al. adapted the dependency structure ma-
trix (DSM) from the domain of process management to analyze
architectural dependencies in software [41]. DSM presents a con-

2 Five levels from ‘‘strongly disagree” to ‘‘strongly agree” http://en.wikipedia.org/
wiki/Likert_scale
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sistent visualization that offers a system overview. While the visu-
alization scales for large systems, it is poor in terms of precise
information about the package. DSM cells contain a number indi-
cating the number of references made between packages. However
DSM did not focus on packages cohesion and co-use or co-usage of
classes.

X. Dong et al. [14] present the High-level Object Dependency
Graph (HODG) that helps capturing, from a high-level point of
view, possible usage dependencies among coarse-grained software
entities, namely packages. In their approach, they interpret the
usage dependencies between classes in the context of their hierar-
chy and present a new graph of the system under analysis. While
the given graph is helpful for understanding the considered system
from a high-level point of view, it does not give any information
about package cohesion nor about the co-use or the similarity be-
tween classes. Also, their graph visualization still difficult to be
interpreted by human eyes because within it, the nodes have dif-
ferent sizes but without any meaningful dimension. The HODG
has not visual semantics and it uses numbers to visualize almost
information.

Program visualization and navigation. Package Fingerprints are
based on similar principles, but provide more visual information
and help identify groups of packages with similar dependencies.
A fingerprint exploits pre-attentive processing using color, con-
trast, and the principle of placeholders. In addition, a fingerprint
by focusing on a package at a time qualifies in a finer-grained
way the dependencies.

A Package Blueprint [17] presents a condensed view of a pack-
age in terms of the references made between packages. It acts as a
map and puts in situation the references between packages. While
package blueprint provides a compact view and shows dependen-
cies on a per-class basis, it does not help to group the client/pro-
vider packages in terms of their dependencies to the package
under analysis.

Kuhn et al. used information retrieval to exploit linguistic infor-
mation. He introduced semantic clustering to group source arti-
facts that use similar vocabulary [24]. He uses vocabulary topics
to reveal the intention of the code and the similarity between its
artifacts, then he provides a consistent visualization.

Several works explore packages and their structure but few of
them reveal information on their relationships and dependencies.
In Softwarenaut, Lungu et al. help system discovery by guiding
exploration of nested packages [27]. Storey et al. also worked on
system exploration, supporting zoom-out facilities and forces-
based graph layouts [44]. However the work did not focus on co-
use or co-usage of classes.

Software Metrics. There is a plethora of software metrics on
cohesion: from the simple and bogus LCOM ([12]) to more ad-
vanced LCOM* metrics [7]. Ponisio et al. introduced the notion of
use cohesion [38], which is at the foundation of the fingerprint.
E. Hautas defines a new metric that indicates the percentage of
changes to be made in order to make a package structure acyclic
[22]. While he focuses only on the cyclic dependencies, he does
not provide any utility that helps understanding packages or indi-
cating their cohesion or similarity.

Package evolution. A number of approaches give summarized
information on package relationships and their evolution: the But-
terfly by Ducasse et al. gives a high-level client/provider trend of
package dependencies [16]; Pzinger et al. show the evolution of
package metrics using Kiviat diagrams [37]; Chuah and Eick use
rich glyphs to characterize software artifacts and their evolution
(number of bugs, number of deleted lines, kind of language...)
[11]. In particular, the timewheel exploits pre-attentive processing,
and the infobug presents many different data sources in a compact
way; finally, D’Ambros et al. reveal package coupling by showing
evolutions that are correlated in time [15].

Co-evolution. Other works treat and visualize information about
software co-change evolution, looking at coupling from a temporal
perspective, and software development teams and activities
[10,18,20,43,47,50]. Such approaches are completementary to ours
in the sense that we only focus on the static nature of the packages
and their relationships. While those approaches are valuable and
provide fine-grained views of packages that may help understand-
ing the contextual coupling and cohesion inside packages, they fall
short on the analysis of a single version of a system.

10. Conclusion

In this paper, we tackled the problem of understanding the de-
tails of package relationships from a usage perspective. We de-
scribed the package fingerprints, and their use as a visual
approach for understanding package relationships, contextual
cohesion, and the conceptual coupling of their classes. While
designing fingerprint, we exploited pre-attentive processing using
color properties and saving placeholders principle. We also intro-
duced interactivity and multi-selection mechanism to help the
user during the analysis task.

We successfully applied the visualization to several large sys-
tems and we have been able to quickly point out badly designed
packages, and to extract relevant patterns. While applying finger-
prints to large systems that contain radically different packages
in terms of size and references, the visualization generally scaled
well without hindering the detection of different patterns.
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